首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Homeodomain proteins have been shown to play a major role in the development of various organisms. A novel Arabidopsis homeodomain protein has been isolated based on its capability to interact with a DNA motif derived from the light-induced cab-E promoter of Nicotiana plumbaginifolia . The homeodomain of this protein, designated HAT3.1, differs substantially from those in other plant homeobox proteins identified so far. Furthermore, HAT3.1 is unique among other Arabidopsis proteins in that it does not contain a leucine zipper motif following the homeodomain. HAT3.1 is further characterized by an N-terminal region that shares substantial sequence similarity with the maize homeodomain protein Zmhox1a. Within this conserved region, the presence of eight regularly spaced cysteine/histidine residues was observed reminiscent of other metal-binding domains. Based on the strong evolutionary conservation of this domain, it is proposed that this region represents a novel protein-motif which is denoted PHD-finger ( p lant h omeo- d omain-finger). In vitro DNA binding studies demonstrated that HAT3.1 is capable of interacting with any DNA fragment larger than 100 bp. Interestingly, a deletion of the N-terminal PHD-finger domain completely abolished DNA binding, suggesting that this region may play an important functional role in protein—protein or protein—DNA interaction. HAT3.1 mRNA was primarily detected in root tissue, implying a regulatory function of this protein in root development.  相似文献   

3.
4.
Regulatory sequences or factors involved in the regulation of target genes of Drosophila homeodomain proteins are largely unknown. Here, we identify sequence elements that are involved in the function of the fushi tarazu (ftz) autoregulatory element AE, a direct in vivo target of the homeodomain protein ftz. A systematic deletion analysis of AE in transgenic embryos defines multiple elements that are redundantly involved in enhancer activity. Sequences juxtaposed to ftz binding sites are not strictly required for enhancer function. Several sequence motifs are conserved in other developmentally regulated genes of Drosophila melanogaster and in the AE homologue of Drosophila virilis. The D. virilis AE is functional in D. melanogaster. The sequence motifs identified here are candidate elements contributing to the target specificity of the homeodomain protein ftz.  相似文献   

5.
6.
7.
Hox homeodomain proteins are developmental regulators that determine body plan in a variety of organisms. A majority of the vertebrate Hox proteins bind DNA as heterodimers with the Pbx1 homeodomain protein. We report here the 2.35 A structure of a ternary complex containing a human HoxB1-Pbx1 heterodimer bound to DNA. Heterodimer contacts are mediated by the hexapeptide of HoxB1, which binds in a pocket in the Pbx1 protein formed in part by a three-amino acid insertion in the Pbx1 homeodomain. The Pbx1 DNA-binding domain is larger than the canonical homeodomain, containing an additional alpha helix that appears to contribute to binding of the HoxB1 hexapeptide and to stable binding of Pbx1 to DNA. The structure suggests a model for modulation of Hox DNA binding activity by Pbx1 and related proteins.  相似文献   

8.
9.
10.
11.
Multiple A + T-rich stretches in the 5' flanking region of the Bombyx mori fibroin light-chain gene have been shown to bind two Drosophila homeodomain proteins, EVE (even-skipped) and ZEN (zerknüllt), with high affinities. Some of these sites fall into a class that has the established consensus sequence of the binding sites (TCAATTAAAT) for a diverse group of Drosophila homeodomain proteins, while others are quite heterogenous except that they all possess a core TAAT motif. Since clusters of homeodomain binding sites can also be found in the promoters of other silk protein genes, the fibroin gene and the sericin-1 gene, these observations suggest a possible involvement of some homeobox genes in the regulation of a group of silk protein genes.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号