首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strain S1.2 of Silene armeria was grown under an 8h-photoperiodand treated with GA3 every day for 20 days. This growth substancecaused stem elongation, but no flowering in this long-day plant.Changes in the mitotic index and DNA content of cells in thevarious zones of the apical meristem before, during and afterGA3 treatment were described. Mitotic activity and increasein the proportion of nuclei at the 4C level (S+G2 phase of thecell cycle) were strongly stimulated in the rib-meristem, andto a lesser extent in the lateral zone, but not in the axialzone. This stimulation of apical activity reached a peak aftertwo GA3 treatments and then declined gradually, so that after20 days the activity in GA3-treated meristems was lower thanthat in untreated controls; at this point most cells were inthe G1 phase. When the GA3 treatment was discontinued, there was a gradualincrease in the mitotic activity which ultimately reached thesame level as that in controls. Stem elongation ceased and leavesformed aerial rosettes. It is concluded that in vegetative plants of strain S1.2 ofSilene armeria GA3 acts mainly on the rib-meristem cells whichresults in stem elongation. Lack of response in the axial cellsexplains why GA3 fails to induce flowering in this strain ofSilene armeria. (Received June 18, 1983; Accepted August 3, 1983)  相似文献   

2.
CLOWES  F. A. L. 《Annals of botany》1964,28(2):345-350
Percentages of cells with micronuclei in four regions of theroot meristems of Vicia faba are used as measures of sensitivityto acute X-irradiation. There are two peaks in these percentages,occurring at about four and eight days after 360 rads and twoand six days after 180 rads. Two peaks exist, probably becausethe radiation delays cells that were in G1 much more than cellsthat were in G2 in reaching the first post-irradiation mitosisand consequently in displaying micronuclei in the followinginterphase. The relative heights of the two peaks thereforereflect the relative numbers of cells in G1 and G2 as well asthe relative sensitivity of the two phases to chromosomal damage. The cells of the quiescent centre are injured least by the radiationas they are mostly held at Gt. The meristem thus obeys the lawof Bergonié and Tribondeau, but differs from that ofZea in that the meristematic cells of the cap initials and steleimmediately adjacent to the quiescent centre resemble the quiescentcentre much more closely than the stele 250 µ away inthe numbers of micronuclei produced. This is consistent withthe differences already known between the two species concerningrates of division in the different regions of the meristem andthe behaviour of the meristem after severe radiation injury.  相似文献   

3.
Reproductive Allometry in Soybean, Maize and Sunflower   总被引:4,自引:2,他引:2  
We compared the relationship between grain yield per plant (YP)and shoot biomass per plant (SP) in three annual crops withcontrasting reproductive strategies: sunflower, a determinatespecies with a single inflorescence; maize, a determinate specieswith a limited capacity to adjust the number of ears in responseto resource availability; and indeterminate soybean, a specieswith a large capacity to adjust the number of inflorescences.Our working hypotheses were: H1—the relationship betweenYPandSP is linear; H2—the intercept of the model is zero,i.e. there is not a threshold plant mass for reproduction. Awide range of YPand SPwas generated by manipulation of plantdensity;SPvaried between 0.3 and 196 g per plant in soybean,between 6 and 873 g per plant in sunflower and between 23 and697 g per plant in maize. Within these broad ranges of plantsize, both hypotheses were rejected in five out of six experiments,i.e. the relationship between YPand SPdeparted from linearityand there was a threshold for SPbelow which no grain set occurred.TheSP threshold for grain set varied widely among species; itwas close to 2 g per plant for soybean, 27 g per plant for sunflowerand 43–71 g per plant for maize. Because of this sizethreshold and non-linearity, harvest index (HI = YPSP-1) wasstable for mid-size plants, diminished slightly for large plants,and diminished sharply for smaller plants in all three crops.Harvest index stability was highest in soybean, intermediatein sunflower and lowest in maize. Differential stability ofreproductive partitioning partially derived from contrastingpatterns of meristem allocation. Copyright 2000 Annals of BotanyCompany Helianthus annuus L., Zea mays L., Glycine max(L.) Merrill, grain yield, harvest index, plant density, reproductive allocation, meristem allocation, plasticity  相似文献   

4.
TAYLOR  M.; FRANCIS  D. 《Annals of botany》1989,64(6):625-633
The cell cycle in Silene coeli-rosa shoot apices was measuredto test whether or not early components of the floral stimulus,produced during the 2nd and 3rd long days (LD) of an inductiveLD treatment, resulted in an increase in the duration of G2phase in constant 20–24 h cell cycles. Plants were grownat 20°C in short days (SD) of 8 h light and 16 h darknessfor 28 d (day 0). Starting on day 0, plants were given SD or3 LD each comprising an identical 8 h day and 16 h photo-extension,or 3 dark-interrupted (d.i.) non-inductive LD, interrupted at1700 h of each day with 1 h of darkness. The cell cycle (percentagelabelled mitoses method) and changes in cell number were determinedin the shoot apical meristem. During days 1–2 of the SDtreatment, the cell cycle and mean cell generation time (MCGT)was 18 and 32 h, respectively, giving a growth fraction of 56%.During days 2–3, the cell cycle and MCGT shortened to15 and 23 h, respectively (growth fraction = 65%). During days1–2 of the LD and d.i. LD treatments, cell cycles andMCGTs were 9–10 and 27–29 h, respectively, resultingin smaller growth fractions (about 33%). Thus, shortened cellcycles and altered growth fractions occurred regardless of whetheror not the treatment was inductive. The LD treatment resultedin a marked shortening of G1 and, to a lesser extent, S-phase,whilst G2 remained constant. These changes were consistent withincreases in the proportion of cells in G2 during the photoextensionof each LD which were suppressed during the comparable periodsof the d.i. LD treatment. The latter treatment resulted in eachphase occupying virtually identical proportions of the cellcycle as in the SD treatment. Thus, the unique cell cycle responsesto the initial part of the inductive LD treatment were increasesin the proportion of cells in G2 coupled with G1 and G2 beingof similar duration. Cell cycle, mean cell generation time, shoot apex, Silene coeli-rosa  相似文献   

5.
Individuals ofArabidopsis thaliana, collected in different naturalpopulations, were grown in controlled and elevated CO2in a glasshouse.Following germination, root growth of progeny of different linesof these populations was studied in control and elevated atmosphericCO2. No significant direct effect of atmospheric CO2concentrationcould be demonstrated on root growth. An important parentaleffect was apparent, namely that root length and branching weredecreased in seeds collected from a mother plant which had beengrown in elevated CO2. This was correlated with smaller seeds,containing less nitrogen. These parental effects were geneticallyvariable. We conclude that CO2may affect plant fitness via parentaleffects on seed size and early root growth and that the geneticvariability shown in our study demonstrates thatArabidopsispopulationswill evolve in the face of this new selective pressure.Copyright1998 Annals of Botany Company Root growth, root branching, seed, elevated CO2, natural population,Arabidopsis thaliana, parental effect.  相似文献   

6.
The responses of two genotypes of Arabidopsis thaliana, whichdiffer in their sensitivities to nutrients to present and predictedfuture CO2 concentration were determined under rich vs. poornutrient regimes on the basis of both single traits and thewhole plant. Based on individual traits, the two genotypes respondedsimilarly to CO2 enrichment for all the traits measured exceptfor rate of increase in crown diameter, for which a decreasewas observed in the less nutrient-sensitive genotype grown atincreased CO2. Based on the overall response of the whole plant,by analysing groups of plant traits using multivariate analysis,the two genotypes differed substantially from one another andboth responded more strongly to nutrient availability than toCO2 concentration, especially for traits measured at harvestthat related to reproductive fitness. The less nutrient-sensitivegenotype also showed a weaker overall response to CO2, and thepattern of the overall response was strikingly similar at differentnutrient supply. In contrast, the more nutrient-sensitive genotyperesponded more strongly to CO2 than the less nutrient-sensitivegenotype, and responded differently to CO2 at low vs. high nutrientavailability.Copyright 1995, 1999 Academic Press Plasticity, CO2 enrichment, nutrient status, nutrient x CO2 interaction, Arabidopsis thaliana, canonical analysis  相似文献   

7.
Abscisic acid (ABA) at 1 x 10–4 M or 3 x 10–4 Mwas applied to the apical buds of Chenopodium rubrum plantsexposed to different photoperiodic treatments and showing differentpatterns of floral differentiation. Stimulation of growth inwidth of the apical meristem of the shoot and/or inhibitionof growth in length was obtained under all photoperiodic treatments.This change of growth pattern was followed by different effectson flowering. In non-induced plants grown under continuous light ABA stimulatedpericlinal divisions in the peripheral zone and the initiationof leaves as well as the growth in width of bud primordia. Inplants induced by two short days reduced growth of the meristemcoincided with ABA application. Longitudinal growth of the meristemwas inhibited in this case and only a temporary stimulationof inflorescence formation took place. In plants induced ata very early stage, ABA exerted a strong inhibitory effect onflowering. A permanent and reproducible stimulatory effect onflowering was obtained in plants induced by three sub-criticalphotoperiodic cycles if ABA was applied to apices released fromapical dominance. In this case formation of lateral organs andinternodes was promoted by ABA and was followed by stimulatedinflorescence formation. Gibberellic acid (GA2) at 1x 10–4M or 3 x 10–4 M brought about a similar effect on floweringas ABA, although the primary growth effect was different, i.e.GA2 stimulated longitudinal growth. The effects of ABA and GA2 on floral differentiation have beencompared with earlier results obtained from auxin and kinetinapplications. These growth hormones are believed to regulateflowering by changing cellular growth within the shoot apex.Depending on the actual state of the meristem identical growthresponses may result in different patterns of organogenesisand even in opposite effects on flowering. Shoot apex, flowering, photoperiodic induction, abscisic acid, gibberellic acid, Chenopodium rubrum L.  相似文献   

8.
By means of functional screening using the cadmium (Cd)-sensitiveycf1 yeast mutant, we have isolated a novel cDNA clone, DcCDT1,from Digitaria ciliaris growing in a former mining area in northernJapan, and have shown that it confers Cd tolerance to the yeastcells, which accumulated almost 2-fold lower Cd levels thancontrol cells. The 521 bp DcCDT1 cDNA contains an open readingframe of 168 bp and encodes a deduced peptide, DcCDT1, thatis 55 amino acid residues in length, of which 15 (27.3%) arecysteine residues. Five DcCDT1 homologs (here termed OsCDT1–OsCDT5)have been identified in rice, and all of them were up-regulatedto varying degrees in the above-ground tissues by CdCl2 treatment.Localization of green fluorescent protein fusions suggests thatDcCDT1 and OsCDT1 are targeted to both cytoplasmic membranesand cell walls of plant cells. Transgenic Arabidopsis thalianaplants overexpressing DcCDT1 or OsCDT1 displayed a Cd-tolerantphenotype and, consistent with our yeast data, accumulated loweramounts of Cd when grown on CdCl2. Collectively, our data suggestthat DcCDT1 and OsCDT1 function to prevent entry of Cd intoyeast and plant cells and thereby enhance their Cd tolerance.  相似文献   

9.
Background and Aims Neotyphodium lolii is a fungal endophyteof perennial ryegrass (Lolium perenne), improving grass fitnessthrough production of bioactive alkaloids. Neotyphodium speciescan also affect growth and physiology of their host grasses(family Poaceae, sub-family Pooideae), but little is known aboutthe mechanisms. This study examined the effect of N. lolii onnet photosynthesis (Pn) and growth rates in ryegrass genotypesdiffering in endophyte concentration in all leaf tissues. • Methods Plants from two ryegrass genotypes, Nui D andNui UIV, infected with N. lolii (E+) differing approx. 2-foldin endophyte concentration or uninfected clones thereof (E–)were grown in a controlled environment. For each genotype xendophyte treatment, plant growth rates were assessed as tilleringand leaf extension rates, and the light response of Pn, darkrespiration and transpiration measured in leaves of young (30–45d old) and old (>90 d old) plants with a single-chamber openinfrared gas-exchange system. • Key Results Neotyphodium lolii affected CO2-limited ratesof Pn, which were approx. 17 % lower in E+ than E– plants(P < 0·05) in the young plants. Apparent photon yieldand dark respiration were unaffected by the endophyte (P >0·05). Neotyphodium lolii also decreased transpiration(P < 0·05), but only in complete darkness. There wereno endophyte effects on Pn in the old plants (P > 0·05).E+ plants grew faster immediately after replanting (P < 0·05),but had approx. 10 % lower growth rates during mid-log growth(P < 0·05) than E– plants, but there was noeffect on final plant biomass (P > 0·05). The endophyteeffects on Pn and growth tended to be more pronounced in NuiUIV, despite having a lower endophyte concentration than NuiD. • Conclusions Neotyphodium lolii affects CO2 fixation,but not light interception and photochemistry of Pn. The impactof N. lolii on plant growth and photosynthesis is independentof endophyte concentration in the plant, suggesting that theendophyte mycelium is not simply an energy drain to the plant.However, the endophyte effects on Pn and plant growth are stronglydependent on the plant growth phase.  相似文献   

10.
In the search for early-detectable selection criteria for growthat low temperature conditions in tomato, first the initiationand growth of individual leaves was analysed. Scanning electronmicroscopy revealed that the first four primordia had alreadydeveloped during the germination period at 25°C. The primordiumof the fifth leaf, however, was initiated after the transferof seedlings to the experimental conditions. The increase inlength of the first three leaves, and to a lesser extent ofthe fourth leaf, was considerably smaller in comparison withthat of later formed leaves. Moreover, the morphology of thefirst three to four leaves was deviant, whereas the others showedthe normal compound leaf architecture. All these results indicatedthat the fifth leaf was the earliest formed leaf with growthcharacteristics that might reflect the growth potential of thewhole plant. Development of the fifth leaf was tested as a marker for wholeplant growth. At three temperature, 18, 15 and 12°C, growthresponses of the fifth leaf were similar to that of whole plantsin four tomato genotypes: Line A, Line B, Premier and MXXIV-13.Significant differences in relative growth rate of dry weightof whole plants and fifth leaves (RGRW)and of leaf area of thefifth leaves (RGRLA between two fast growing and two slow growinggenotypes were found. No genotype by temperature interactionfor RGRW and RGRLA was found, indicating that the effect oftemperature decrease was similar for the four genotypes. The structure of the mature fifth leaf of one fast and one slowgrowing genotype, Line A and MXXIV-13, was analysed. For bothgenotypes, leaves were small and thick at low temperature, 12°C.The total number of epidermis and palisade parenchyma cellsper leaf was smaller but the size of the cells developed at12°C was larger than at 18°C. Consequently, the slowgrowth at 12°C was due to a low rate of cell division. Atboth temperatures, the fifth leaf to MXXIV-13 was smaller comparedto that of line A. Since the size of the cells were similar,the smaller leaf size was due to lower number of leaf cells. The results confirm the suitability of the growth, especiallyexpressed as RGRLA , of the fifth leaf as a nondestructive marketfor vegetative development of tomato at low temperature. Growthdifferences between genotypes were mainly reflected by differencesin cell number of leaves, which might be correlated with geneticallydetermined differences in cell number of leaf primordia.Copyright1993, 1999 Academic Press Lycopersicon esculentum Mill. genotypes, plant growth, selection criteria, low temperature, leaf initiation, leaf development, RGR, leaf structure, cell expansion  相似文献   

11.
The general pattern of decrease of the 'critical' plant N concentration(i.e. minimum concentration required for maximum growth rate)during growth has been described for several C3 non grain-legumespecies, and this can be used as a reference curve for diagnosisof N nutrition in these species. The present study was undertakento investigate changes of N concentration during growth of agrain legume, in different conditions of N nutrition. Whitelupin (Lupinus albus L.) was grown for six crop seasons in fieldtrials in which inoculation with Rhizobium lupini, nitrogenfertilizer rate, cultivar and plant density were density weremanipulated. The yield and dry matter production of noninoculatedplants were lower than, or at the best similar to, those ofinoculated plants, whatever the level of N supply. From anthesisto the beginning of seed filling, the N concentration of shootsof inoculated plants was found to be remarkably stable betweenyears, N fertilization regimes, cultivars, and for individualplants within a plot. Nitrogen concentration only varied withplant density. By contrast, the N concentration of noninoculatedplants was highly variable and generally lower than that ofinoculated plants, whatever the level of N supply. The highand stable N concentration of inoculated plants did not appearto be necessary for maximum growth rate but seemed to be requiredfor maximum production of seed dry matter and N. The potentialuse of these results to diagnose, in any white lupin crop, aninefficiency of the lupin-R. lupini interaction is evaluated.Copyright1993, 1999 Academic Press Lupinus albus L., white lupin, N2 concentration, inoculated plants, non-inoculated plants, N2 fixation efficiency, diagnosis  相似文献   

12.
A remarkable difference was found in the survival of leavesof Mesembryanthemum crystallinum with plants grown in the C3versus the CAM mode. With excised leaves (petiole in solution)of C3-mode plants subjected to 6 days of darkness, there wasa large reduction in the chlorophyll content of the leaf andleaf turgor had decreased. By day 9, the chlorophyll had disappeared,except at the major veins, and the leaf tip had dried and turnedbrown. In contrast, the leaf tissue in the CAM mode showed onlya partial loss of chlorophyll during the same period, and evenafter 17 days of darkness, the tissue at the base was stillalive. Similarly, intact plants grown in the C3 mode deterioratedmuch faster during 20 days of darkness than did plants grownin the CAM mode. Chlorophyll content, chlorophyll a/b ratio,phosphoenolpyruvate carboxylase, NADP-malic enzyme, malate andstarch content were measured. In both C3- and CAM-mode plants,the starch content decreased rapidly during the dark periodand was nearly depleted after two days. In the CAM-mode tissue,there was a relatively high level of malate during prolongeddarkness (up to 17 days), with a transitory rise early in thedark period. In contrast, the malate content was low and rapidlydepleted in the C3-mode leaves kept in darkness. These findingssuggest that malate may be an important source of carbon forsustaining leaves of CAM-mode M. crystallinum during prolongeddarkness. (Received May 20, 1987; Accepted October 23, 1987)  相似文献   

13.
We developed a polyethylene glycol (PEG)-mediated direct DNAtransfer method from intact Saccharomyces cerevisiae spheroplastsinto Arabidopsis thaliana protoplasts. To monitor the DNA transferfrom yeast to plant cells, ß-glucuronidase (GUS) reportergene in which a plant intron was inserted was used as a reporter.This intron-GUS reporter gene on a 2µm-based plasmid vectorwas not expressed in yeast transformants, while it expressedGUS activity when the plasmid DNA was introduced into plantcells. When a mixture of 1 x 108 of S. cerevisiae spheroplastsharboring the plasmid and 2 x 106 of A. thaliana protoplastswas treated with PEG and high pH-high Ca2+ solution (0.4 M mannitol,50 mM CaCl2, 50 mM glycine-NaOH pH 10.5), GUS activity was detectedin the extract of the plant cells after a three-day culture.The GUS activity was higher than that of a reconstitution experimentin which the mixture of 1 x 108 of S. cerevisiae spheroplastswhich did not carry the reporter gene, 2 x 106 of A. thalianaprotoplasts and the same amount of the reporter plasmid DNAas that contained in 1 x 108 of S. cerevisiae spheroplasts,was treated with PEG and high pH-high Ca2+ solution. Moreover,the GUS gene expression was resistant to micrococcal nucleasetreatment before and during PEG treatment. From these results,we concluded that plasmid DNA can be directly transferred fromintact yeast spheroplasts to plant protoplasts by a nuclease-resistantprocess, possibly by the cell fusion. 2Deceased on September 15, 1992.  相似文献   

14.
The quantum yields of photosynthetic O2 evolution were measuredin 15 species of C4 plants belonging to three different decarboxylationtypes (NADP-ME type, NAD-ME type and PEP-CK type) and 5 speciesof C3 plants and evaluated relative to the maximum theoreticalvalue of 0.125 mol oxygen quanta-1. At 25°C and 1% CO2,the quantum yield in C4 plants averaged 0.079 (differences betweensubgroups not significant) which was significantly lower thanthe quantum yield in C3 plants (average of 0.105 for 5 species).This lower quantum yield in C4 plants is thought to reflectthe requirement of energy in the C4 cycle. For the C4 NADP-MEtype plant Z. mays and NAD-ME type plant P. miliaceum, quantumyields were also measured over a range of CO2 levels between1 and 20%. In both species maximum quantum yields were obtainedunder 10% CO2 (0.105 O2 quanta-1 in Z. mays and 0.097 O2 quanta-1in P. miliaceum) indicating that at this CO2 concentration thequantum yields are similar to those obtained in C3 plants underCO2 saturation. The high quantum yield values in C4 plants undervery high CO2 may be accomplished by direct diffusion of atmosphericCO2 to bundle sheath cells, its fixation in the C3 pathway,and feedback inhibition of the C4 cycle by inorganic carbon. (Received June 6, 1995; Accepted August 15, 1995)  相似文献   

15.
The influence of elevated CO2 concentration (670 ppm) on thestructure, distribution, and patterning of stomata in Tradescantialeaves was studied by making comparisons with plants grown atambient CO2. Extra subsidiary cells, beyond the normal complementof four per stoma, were associated with nearly half the stomatalcomplexes on leaves grown in elevated CO2. The extra cells sharedcharacteristics, such as pigmentation and expansion, with thetypical subsidiary cells. The position and shape of the extrasubsidiary cells in face view differed in the green and purplevarieties of Tradescantia. Substomatal cavities of complexeswith extra subsidiary cells appeared larger than those foundin control leaves. Stomatal frequency expressed on the basisof leaf area did not differ from the control. Stomatal frequencybased on cell counts (stomatal index) was greater in leavesgrown in CO2-enriched air when all subsidiary cells were countedas part of the stomatal complex. This difference was eliminatedwhen subsidiary cells were included in the count of epidermalcells, thereby evaluating the frequency of guard cell pairs.The extra subsidiary cells were, therefore, recruited from theepidermal cell population during development. Stomatal frequencyin plants grown at elevated temperature (29 C) was not significantlydifferent from that of the control (24 C). The linear aggregationsof stomata were similar in plants grown in ambient and elevatedCO2. Since enriched CO2 had no effect on the structure or patterningof guard cells, but resulted in the formation of additionalsubsidiary cells, it is likely that separate and independentevents pattern the two cell types. Plants grown at enrichedCO2 levels had significantly greater internode lengths, butleaf area and the time interval between the appearance of successiveleaves were similar to that of control plants. Porometric measurementsrevealed that stomatal conductance of plants grown under elevatedCO2 was lower than that of control leaves and those grown atelevated temperature. Tradescantia was capable of regulatingstomatal conductance in response to elevated CO2 without changingthe relative number of stomata present on the leaf. Key words: Elevated CO2, stomata, subsidiary cells, patterning  相似文献   

16.
Striga hermonthica is a root hemiparasitic angiosperm nativeto the African semi-arid tropics. It is a major weed of C4 cerealsbut locally it is also an important weed of the C3 plant, rice[Oryza sativa). Infected rice plants produced 17% and 42% ofthe total biomass of uninfected plants when grown at two differentammonium nitrate concentrations, 1 and 3 mol m–3, respectively.S. hermonthica prevented grain production at both concentrationsof nitrogen. At the lower concentration no heads were produced.At the higher concentration head weight was only 6% of uninfectedcontrols. S. hermonthica also altered the partitioning of drymatter between plant parts, such that shoot growth was reducedto a greater extent than root growth. As a consequence the root-to-shootratio of infected plants was approximately five times greaterthan that of uninfected control plants. Light saturated ratesof photosynthesis In infected plants were 56% and 70% of thoseof uninfected controls, at low and high nitrogen, respectively.Infection also led to lower values of stomatal conductance althoughthe substom-atal CO2 concentration was unaffected. Analysisof the response of photosynthesis to substomatal CO2 concentration(A/CI curves) demonstrated that lower rates of photosynthesiscould not be solely attributed to lower stomatal conductances.Lower initial slopes and asymptotic rates suggest that bothcarboxylation and processes controlling regeneration of ribulose-1,5-bisphosphate are reduced by infection. The data are discussedwith respect to the influence of S. hermonthica on the growthand photosynthesis of C4 hosts, where in contrast to the situationwith rice, nitrogen feeding results in a marked alleviationof the effects of the parasite on the host. Key words: Rice, Striga, growth, photosynthesis, nitrogen  相似文献   

17.
We report new information on silica deposition in 15 plant species,including nine grasses, two sedges and four composites. Thesilica depositional patterns found in seven of the grass speciesindicate that they are C4 plants. However the festucoid grassCortaderia selloana is a C3 plant with long leaf trichomes andoval silica structures in the leaves. In contrast the panicoidC4 grasses Chasmathium latifolium, Chasmathium sessiflorum,Imperata cylindrica, Panicum repens, Panicum commutatum andSetaria magna, all produce dumb-bell-shaped silica structuresin the leaves. The chloridoid grasses Spartina patens and Spartinacynosuroides have saddle-shaped structures and no dumb-bellor oval shaped ones. The sedges Rhynchospora plumosa and Scirpuscyperinus were found to have oval phytoliths and may be C3 plants.Our examination of these and other grasses strongly suggeststhat C4 grasses tend to produce the same type of silica cells.Grasses and sedges with C3 type photosynthesis tend to produceoval silica structures. The composite Grindelia squarrosa andsunflowers Helianthus angustifolia, Helianthus atrorubens andHelianthus tuberosus absorb relatively small amounts of siliconand larger amounts of calcium, where both elements deposit inleaf trichomes. We found no clear indicator for the C3 sunflowersor C4 types in the Asteraceae. Helianthus tuberosus leaves havemany trichomes on the adaxial surface. These trichomes havea higher concentration of silica than the surrounding leaf surface.Helianthus tuberosus leaves had much higher ash and silica contentsthan those of Helianthus angustifolia and Helianthus atrorubens.The composite Grindelia squarrosa has a usual deposition ofsilica in the basal cells around the guard cells. Silica depositionoften reflects the surface features of a leaf. An exceptionis Scripus cyperinus where the silica structures are deep inthe tissue and do not reflect the surface configurations. Theinforescence of Setaria magna had a 14.64 silica content. Thetufts of white, silky hairs characteristic of Imperata cylindricainflorescence have no silica. C3 and C4 plants, silica and ash content, scanning electron microscopy, energy-dispersive X-ray analysis, silicon distribution, spectra of elements in plants, trichomes, silica fibres, phytoliths  相似文献   

18.
The effects of withdrawing nitrogen (N) from the nutrient solutionof adult tomato plants growing in rockwool in a greenhouse wereinvestigated over a 6 week period during fruit production. Thetreatment reduced total plant growth after a lag period of about2 weeks. The commercial fruit yield after 6 weeks of N deprivationwas 7.7 kg m-2compared to 9.3 kg m-2in control plants. Duringthe experiment, growth of the -N plants was fuelled by N reservescontained in both the substrate (rockwool) and in plant organs.The nitrogen budget calculated for -N plants showed that onlya small amount of organic-N was readily available for internalcycling from organs such as stems. It served mainly to feedgrowing fruits which were the main sinks in the plant. The studyalso established that stores of nitrate-N were fully depletedbut it took 45 d for the -N plants to metabolize completelytheir nitrate reserves. This indicates that internal nitrateis not a readily-accessible store of labile N. An estimationof the critical N concentration (%Nc) in the aerial dry matterwas made from the data. Thus, for a crop yielding about 9.9tons DM ha-1, %Ncwas close to 2.5%. This result is discussedin light of existing models that describe the ontogenic declinein %Ncin dry biomass of C3plants. The study indicates that thecurrent regime of N fertilization practised in soilless culturesnot only leads to ineffective nitrogen use but also to largelosses of N to the environment; N concentrations should be decreasedin feeding recipes. The use of N-free nutrient solutions priorto the termination of plant culture may also be a means of limitingthe loss of eutrophying elements, such as nitrate, to the environment.Copyright 2001 Annals of Botany Company Lycopersicon esculentum, tomato, organ dry biomass, critical nitrogen concentration, compartment, rockwool, nitrate interruption, distribution, reserves  相似文献   

19.
Abscisic acid (ABA) and 2-trans-ABA (t-ABA) biosynthesis werestudied in wild type Landsberg erecta and the three allelicaba mutants of Arabidopsis thaliana (L.) Heynh., which are impairedin epoxy-carotenoid biosynthesis. Labelling experiments with18O2and mass spectrometric analysis of [18O]ABA and its catabolitesABA-glucose ester (ABA-GE) and phaseic acid (PA), and t- ABAand t-ABA-GE, showed that t-ABA biosynthesis was less affectedthan ABA biosynthesis by mutations at the ABA locus. The aba-4allele caused the most severe impairment of ABA biosynthesiscompared with the other two mutant alleles aba-1 and aba-3,yet aba-4 plants synthesized as much t-ABA as wild type Landsbergerecta plants. Feeding experiments with RS- [2H6]ABA-aldehydeisomers and unlabelled xanthoxin isomers suggest that t-xanthoxinand t-ABA-aldehyde are precursors to ABA and t-ABA in Arabidopsis Key words: ABA-alcohol, ABA-aldehyde, ABA-glucose ester, 18O2 labelling, phaseic acid  相似文献   

20.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号