首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taxol, a microtubule stabilizing drug, induces the formation of numerous microtubule asters in the cytoplasm of mitotic cells (De Brabander, M., G. Geuens, R. Nuydens, R. Willebrords, J. DeMey. 1981. Proc. Natl. Acad. Sci. USA. 78:5608-5612). The center of these asters share with spindle poles some characteristics such as the presence of centrosomal material and calmodulin. We have recently reproduced the assembly of taxol asters in a cell-free system (Buendia, B., C. Antony, F. Verde, M. Bornens, and E. Karsenti. 1990. J. Cell Sci. 97:259-271) using extracts of Xenopus eggs. In this paper, we show that taxol aster assembly requires phosphorylation, and that they do not grow from preformed centers, but rather by a reorganization of microtubules first crosslinked into bundles. This process seems to involve sliding of microtubules along each other and we show that cytoplasmic dynein is required for taxol aster assembly. This result provides a possible functional basis to the recent findings, that dynein is present in the spindle and enriched near spindle poles (Pfarr, C. M., M. Cove, P. M. Grissom, T. S. Hays, M. E. Porter, and J. R. McIntosh. 1990. Nature (Lond.). 345:263-265; Steuer, E. R., L. Wordeman, T. A. Schroer, and M. P. Sheetz. 1990. Nature (Lond.). 345:266-268).  相似文献   

2.
We report that a peripheral Golgi protein with a molecular mass of 210 kD localized at the cis-Golgi network (Rios, R.M., A.M. Tassin, C. Celati, C. Antony, M.C. Boissier, J.C. Homberg, and M. Bornens. 1994. J. Cell Biol. 125:997-1013) is a microtubule-binding protein that associates in situ with a subpopulation of stable microtubules. Interaction of this protein, now called GMAP-210, for Golgi microtubule-associated protein 210, with microtubules in vitro is direct, tight and nucleotide-independent. Biochemical analysis further suggests that GMAP-210 specifically binds to microtubule ends. The full-length cDNA encoding GMAP-210 predicts a protein of 1, 979 amino acids with a very long central coiled-coil domain. Deletion analyses in vitro show that the COOH terminus of GMAP-210 binds to microtubules whereas the NH2 terminus binds to Golgi membranes. Overexpression of GMAP-210-encoding cDNA induced a dramatic enlargement of the Golgi apparatus and perturbations in the microtubule network. These effects did not occur when a mutant lacking the COOH-terminal domain was expressed. When transfected in fusion with the green fluorescent protein, the NH2-terminal domain associated with the cis-Golgi network whereas the COOH-terminal microtubule-binding domain localized at the centrosome. Altogether these data support the view that GMAP-210 serves to link the cis-Golgi network to the minus ends of centrosome-nucleated microtubules. In addition, this interaction appears essential for ensuring the proper morphology and size of the Golgi apparatus.  相似文献   

3.
Previous work from our laboratory suggested that microtubules are released from the neuronal centrosome and then transported into the axon (Ahmad, F.J., and P.W. Baas. 1995. J. Cell Sci. 108: 2761–2769). In these studies, cultured sympathetic neurons were treated with nocodazole to depolymerize most of their microtubule polymer, rinsed free of the drug for a few minutes to permit a burst of microtubule assembly from the centrosome, and then exposed to nanomolar levels of vinblastine to suppress further microtubule assembly from occurring. Over time, the microtubules appeared first near the centrosome, then dispersed throughout the cytoplasm, and finally concentrated beneath the periphery of the cell body and within developing axons. In the present study, we microinjected fluorescent tubulin into the neurons at the time of the vinblastine treatment. Fluorescent tubulin was not detected in the microtubules over the time frame of the experiment, confirming that the redistribution of microtubules observed with the experimental regime reflects microtubule transport rather than microtubule assembly. To determine whether cytoplasmic dynein is the motor protein that drives this transport, we experimentally increased the levels of the dynamitin subunit of dynactin within the neurons. Dynactin, a complex of proteins that mediates the interaction of cytoplasmic dynein and its cargo, dissociates under these conditions, resulting in a cessation of all functions of the motor tested to date (Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. J. Cell Biol. 132: 617–633). In the presence of excess dynamitin, the microtubules did not show the outward progression but instead remained near the centrosome or dispersed throughout the cytoplasm. On the basis of these results, we conclude that cytoplasmic dynein and dynactin are essential for the transport of microtubules from the centrosome into the axon.  相似文献   

4.
Hook decoration with pig brain tubulin was used to assess the polarity of microtubules which mainly have 15 protofilaments in the transcellular bundles of late pupal Drosophila wing epidermal cells. The microtubules make end-on contact with cell surfaces. Most microtubules in each bundle exhibited a uniform polarity. They were oriented with their minus ends associated with their hemidesmosomal anchorage points at the apical cuticle-secreting surfaces of the cells. Plus ends were directed towards, and were sometimes connected to, basal attachment desmosomes at the opposite ends of the cells. The orientation of microtubules at cell apices, with minus ends directed towards the cell surface, is opposite to the polarity anticipated for microtubules which have elongated centrifugally from centrosomes. It is consistent, however, with evidence that microtubule assembly is nucleated by plasma membrane-associated sites at the apical surfaces of the cells (Mogensen, M. M., and J. B. Tucker. 1987. J. Cell Sci. 88:95-107) after these cells have lost their centriole-containing, centrosomal, microtubule-organizing centers (Tucker, J. B., M. J. Milner, D. A. Currie, J. W. Muir, D. A. Forrest, and M.-J. Spencer. 1986. Eur. J. Cell Biol. 41:279-289). Our findings indicate that the plus ends of many of these apically nucleated microtubules are captured by the basal desmosomes. Hence, the situation may be analogous to the polar-nucleation/chromosomal-capture scheme for kinetochore microtubule assembly in mitotic and meiotic spindles. The cell surface-associated nucleation-elongation-capture mechanism proposed here may also apply during assembly of transcellular microtubule arrays in certain other animal tissue cell types.  相似文献   

5.
Microtubule assembly in vivo was studied by hapten-mediated immunocytochemistry. Tubulin was derivatized with dichlorotriazinylaminofluorescein (DTAF) and microinjected into living, interphase mammalian cells. Sites of incorporation were determined at the level of individual microtubules by double-label immunofluorescence. The haptenized tubulin was localized by an anti-fluorescein antibody and a second antibody conjugated with fluorescein. Total microtubules were identified by anti-tubulin and a secondary antibody conjugated with rhodamine. Contrary to recent studies (Salmon, E. D., et al., 1984, J. Cell Biol., 99:2165-2174; Saxton, W. M., et al., 1984, J. Cell Biol., 99:2175-2186) which suggest that tubulin incorporates all along the length of microtubules in vivo, we found that microtubule assembly in interphase cells was in vivo, as in vitro, an end-mediated process. Microtubules that radiated out toward the cell periphery incorporated the DTAF-tubulin solely at their distal, that is, their plus ends. We also found that a proportion of the microtubules connected to the centrosomes incorporated the DTAF-tubulin along their entire length, which suggests that the centrosome can nucleate the formation of new microtubules.  相似文献   

6.
Although the centrosome is traditionally viewed as cell’s principle microtubule organizing center (MTOC), regulation of microtubule dynamics at the cell cortex plays an equally important role in the formation of the steady-state microtubule network. Several recent studies, including one published in this issue, reveal that complex signaling mechanisms associated with adherence junctions influence both microtubule nucleation at the centrosome, and the stability of non-centrosomal microtubules.

In the mid 1980s Marc Kirschner and Timothy Mitchison proposed an elegant “search-and-capture” hypothesis that seemed to explain how cells manage to convert a simple radial array of microtubules produced by the centrosome into the complex and precisely regulated asymmetric network found in a typical polarized cell. The key to this mechanism was the selective stabilization of inherently dynamic microtubule plus ends at the certain parts of cell cortex.4 Subsequently, it was shown that microtubule plus ends can in fact be captured and stabilized at diverse cortical loci including focal adhesions and adherence junctions. These observations provided direct support to the search-and-capture hypothesis. However, in recent years it became clear that role of cell cortex in the regulation of microtubule dynamics goes beyond simple stabilization of the plus ends. For example, there is evidence that integrin β1 is involved in the regulation of microtubule nucleation at the centrosome.6 Further, in polarized epithelia, cell cortex serves as the dominant MTOC, effectively replacing the centrosome.5 Thus, cell-cortex mechanisms affect microtubule dynamics both at their plus- and minus ends. The challenge now is to identify molecular pathways underlying this regulation.

A study in this issue of Cell Cycle (Shtutman et al.) suggests that α-catenin, a major component of adherence junctions is responsible for promoting microtubule nucleation and/or stability in a centrosome-independent fashion. Shtutman and coworkers used centrosome-free cytoplasts. The number of microtubules in these cytoplasts is low in the absence of cell-cell contacts but increases to near-normal levels in confluent cultures3 or upon overexpression of cadherins1 suggesting that adherence junctions somehow regulate microtubule dynamics. Shtutman and coworkers now demonstrate a similar increase in microtubule density can be induced by overexpression of a membrane-targeted α catenin. This is an exciting finding because α-catenin is also directly involved in the regulation of actin dynamics2 and thus this molecule emerges as a central player in the global regulation of the cytoskeleton in response to extracellular interactions. Interestingly, expression of non-membrane-targeted α-catenin only mildly increased the density of microtubule network in centrosome-free cytoplasts suggesting that α-catenin needs to be engaged in an activation event at the cell cortex, perhaps within the adherence junction.

Although formation of cell-cell junctions clearly increases the density of microtubule network, microtubule nucleation appears to occur throughout the cytoplasm and not preferentially at adherence junctions in these cells.1 Thus, local interactions at adherence junctions ultimately result in the propagation of a certain factor(s) that influences global microtubule dynamics. The exact nature of this factor or even the general layout of the pathway that alters microtubule dynamics in response to cortical interactions remain unknown. However, the demonstration that α-catenin is one of the molecular players required for this pathway is an important towards the understanding the link between extracellular interactions and microtubule dynamics.

Further Reading

Chausovsky A, Bershadsky AD, Borisy GG. Cadherin-mediated regulation of microtubule dynamics. Nat Cell Biol 2000; 2:797- 804. Gates J, Peifer M. Can 1000 reviews be wrong? Actin, alpha-Catenin, and adherens junctions. Cell 2005; 123:769-72. Karsenti E, Kobayashi S, Mitchison T, Kirschner M. Role of the centrosome in organizing the interphase microtubule array: properties of cytoplasts containing or lacking centrosomes. J Cell Biol 1984; 98:1763-76. Kirschner M, Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell 1986; 45:329-42. Reilein A, Yamada S, Nelson WJ. Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells. J Cell Biol 2005; 171:845-55. Reverte CG, Benware A, Jones CW, LaFlamme SE. Perturbing integrin function inhibits microtubule growth from centrosomes, spindle assembly, and cytokinesis. J Cell Biol 2006; 174:491-7.  相似文献   

7.
Rhodamine-labeled monoclonal antibodies, which react with tyrosinated alpha-tubulin (clone YL 1/2; Kilmartin, J. V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) and label microtubules in vivo (Wehland, J., M. C. Willingham, and I. Sandoval, 1983, J. Cell Biol., 97:1467-1475) were microinjected into syncytial stage Drosophila embryos. At 1 mg/ml antibody concentration, the microtubule arrays of the surface caps became labeled by YL 1/2 but normal development was found to continue. The results are compared with the data from fixed material particularly with regard to interphase microtubules, centrosome separation, and spindle and midbody formation. At 5 mg/ml antibody concentration the microtubules took up larger quantities of antibodies and clumped around the nuclei. Nuclei with clumped microtubules lost their position in the surface layer and moved into the interior. As a result, the F-actin cap meshwork associated with such nuclei either failed to form or subsided. It is concluded that microtubule activity is required to maintain the nuclei in the surface layer and organize the F-actin meshwork of the caps.  相似文献   

8.
In vitro myogenesis involves a dramatic reorganization of the microtubular network, characterized principally by the relocalization of microtubule nucleating sites at the surface of the nuclei in myotubes, in marked contrast with the classical pericentriolar localization observed in myoblasts (Tassin, A. M., B. Maro, and M. Bornens, 1985, J. Cell Biol., 100:35-46). Since a spatial relationship between the Golgi apparatus and the centrosome is observed in most animal cells, we have decided to follow the fate of the Golgi apparatus during myogenesis by an immunocytochemical approach, using wheat germ agglutinin and an affinity-purified anti-galactosyltransferase. We show that Golgi apparatus in myotubes displays a perinuclear distribution which is strikingly different from the polarized juxtanuclear organization observed in myoblasts. As a result, the Golgi apparatus in myotubes is situated close to the microtubule organizing center (MTOC), the cis-side being situated at a fixed distance from the nuclear envelope, a situation which suggests the existence of a structural association between the Golgi apparatus and the nuclear periphery. This is supported by experiments of microtubule depolymerization by nocodazole, in which a minimal effect was observed on Golgi apparatus localization in myotubes in contrast with the dramatic scattering observed in myoblasts. In both cell types, electron microscopy reveals that microtubule disruption generates individual dictyosomes; this suggests that the connecting structures between dictyosomes are principally affected. This structural dependency of the Golgi apparatus upon microtubules is not apparently accompanied by a reverse dependency of MTOC structure or function upon Golgi apparatus activity. Golgi apparatus modification by monensin, as effective in myotubes as in myoblasts, is without apparent effect on MTOC localization or activity and on microtubule stability. The main result of our study is to show that in a cell type where the MTOC is dissociated from centrioles and where antero-posterior polarity has disappeared, the association between the Golgi apparatus and the MTOC is maintained. The significance of such a tight association is discussed.  相似文献   

9.
Cep135 is a 135-kDa, coiled-coil centrosome protein important for microtubule organization in mammalian cells [Ohta et al., 2002: J. Cell Biol. 156:87-99]. To identify Cep135-interacting molecules, we screened yeast two-hybrid libraries. One clone encoded dynamitin, a p50 dynactin subunit, which localized at the centrosome and has been shown to be involved in anchoring microtubules to centrosomes. The central domain of p50 binds to the C-terminal sequence of Cep135; this was further confirmed by immunoprecipitation and immunostaining of CHO cells co-expressing the binding domains for Cep135 and p50. Exogenous p50 lacking the Cep 135-binding domain failed to locate at the centrosome, suggesting that Cep135 is required for initial targeting of the centrosome. Altered levels of Cep135 and p50 by RNAi and protein overexpression caused the release of endogenous partner molecules from centrosomes. This also resulted in dislocation of other centrosomal molecules, such as gamma-tubulin and pericentrin, ultimately leading to disorganization of microtubule patterns. These results suggest that Cep135 and p50 play an important role in assembly and maintenance of functional microtubule-organizing centers.  相似文献   

10.
Centrosomes isolated from various sources, including human cells, have the capacity to induce parthenogenetic development when injected into unfertilized amphibian eggs. We recently isolated calf thymus centrosomes and showed that they differ structurally and functionally from previously isolated centrosomes of KE37 cells, in that the two centrioles in calf thymocytes are linearly associated by their proximal ends through a mass of electron dense material and nucleate few microtubules from their distal ends (Komesli, S., F. Tournier, M. Paintrand, R. Margolis, D. Job, and M. Bornens. 1989. J. Cell Biol. 109:2869-2878). We report here that these centrosomes are also unable to induce egg cleavage and examine the various possibilities which could account for this lack of competence. The results show that: (a) the kinetics of microtubule assembly on calf thymus centrosomes in Xenopus extracts are comparable to those of KE37 centrosomes; (b) centrosomes isolated from thymus of calves raised under controlled conditions (without anabolic agents) also lack competence; (c) centrosomes isolated from bovine cells of other tissues are competent; (d) centrosomes isolated from thymus of three other species (rat, mouse, and human) are competent. Since the lack of activity of calf thymus centrosomes apparently was not linked to species or tissue differences, we compared the ultrastructure of the centrosomes in the various centrosome preparations. The results show a strict correlation between the linear arrangement of centrioles and the lack of activity of the centrosomes. They suggest that the centrosome cycle can be blocked when the centrioles are prevented from separating into a nonlinear configuration, a step which might be critical for the initiation of procentriole budding. They also indicate that the centrosome may be involved in the G0-G1 transition.  相似文献   

11.
《The Journal of cell biology》1988,107(6):2233-2241
Certain intracellular organelles such as the endoplasmic reticulum (Terasaki, M., L. B. Chen, and K. Fujiwara. 1986. J. Cell Biol. 103:1557-1568) and lysosomes (Swanson, J., A. Bushnell, and S. C. Silverstein. Proc. Natl. Acad. Sci. USA. 84:1921-1925) form tubular networks that are closely aligned with microtubules. Here we describe the formation of polygonal networks composed of interconnected membrane tubules that occurs when a preparation of microtubule affinity-purified squid kinesin is combined with microtubules and ATP on a glass surface. The membrane, which is a minor contaminant in the microtubule affinity- purified kinesin preparation, binds to microtubules translocating along kinesin-coated glass surfaces. Force exerted by kinesin upon the microtubule is transmitted to the membrane and a tubular extension of the membrane is produced. As the membrane tubule elongates, membrane tension exerts an opposing force upon the translocating microtubule that can alter its direction of movement by dissociating or partially dissociating the microtubule from the kinesin-coated surface. Membrane tubules that come in contact appear to fuse with one another, and thus give rise to two-dimensional polygonal networks of tubules that have similar features to endoplasmic reticulum networks in cells. Artificial liposomes composed of dimyristoylphosphatidylcholine and yolk phosphatidylglycerol also form stable tubular structures when subjected to shear forces, but do not interact with microtubules or form polygonal networks, suggesting that such phenomena may require membrane- associated proteins. These findings indicate that kinesin generates sufficient force to form tubular membrane extensions in vitro and suggest that this microtubule-based motility protein may also be responsible for creating tubular membrane networks within cells.  相似文献   

12.
Tubulin transport in neurons   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1996,133(6):1355-1366
A question of broad importance in cellular neurobiology has been, how is microtubule cytoskeleton of the axon organized? It is of particular interest because of the history of conflicting results concerning the form in which tubulin is transported in the axon. While many studies indicate a stationary nature of axonal microtubules, a recent series of experiments reports that microtubules are recruited into axons of neurons grown in the presence of a microtubule-inhibitor, vinblastine (Baas, P.W., and F.J. Ahmad. 1993.J. Cell Biol. 120:1427-1437: Ahmad F.J., and P.W. Baas. 1995. J. Cell Sci, 108:2761-2769; Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol, 130:93-103; Yu, W., and P.W. Baas. 1995. J. Neurosci. 15:6827-6833.). Since vinblastine stabilizes bulk microtubule-dynamics in vitro, it was concluded that preformed microtubules moved into newly grown axons. By visualizing the polymerization of injected fluorescent tubulin, we show that substantial microtubule polymerization occurs in neurons grown at reported vinblastine concentrations. Vinblastine inhibits, in a concentration-dependent manner, both neurite outgrowth and microtubule assembly. More importantly, the neuron growth conditions of low vinblastine concentration allowed us to visualize the footprints of the tubulin wave as it polymerized and depolymerized during its slow axonal transport. In contrast, depolymerization resistant fluorescent microtubules did not move when injected in neurons. We show that tubulin subunits, not microtubules, are the primary form of tubulin transport in neurons.  相似文献   

13.
The serine/threonine kinase, PAR-1, is an essential component of the evolutionary-conserved polarity-regulating system, PAR-aPKC system, which plays indispensable roles in establishing asymmetric protein distributions and cell polarity in various biological contexts (Suzuki, A. and Ohno, S. (2006). J. Cell Sci., 119: 979-987; Matenia, D. and Mandelkow, E.M. (2009). Trends Biochem. Sci., 34: 332-342). PAR-1 is also known as MARK, which phosphorylates classical microtubule-associated proteins (MAPs) and detaches MAPs from microtubules (Matenia, D. and Mandelkow, E.M. (2009). Trends Biochem. Sci., 34: 332-342). This MARK activity of PAR-1 suggests its role in microtubule (MT) dynamics, but surprisingly, only few studies have been carried out to address this issue. Here, we summarize our recent study on live imaging analysis of MT dynamics in PAR-1b-depleted cells, which clearly demonstrated the positive role of PAR-1b in maintaining MT dynamics (Hayashi, K., Suzuki, A., Hirai, S., Kurihara, Y., Hoogenraad, C.C., and Ohno, S. (2011). J. Neurosci., 31: 12094-12103). Importantly, our results further revealed the novel physiological function of PAR-1b in maintaining dendritic spine morphology in mature neurons.  相似文献   

14.
Isolation of centrosomes from human cells has revealed a proteic pattern which is both complex and specific. As the most prominent structural element of centrosomes in animal cells, the centriole which is present as two copies, is a highly conserved structure, we have attempted to identify centrosomal proteins on the basis of immunocross-reaction with proteins identified in basal bodies from lower eucaryotes. We report that two antibodies, one raised against the Ca(+)-binding protein centrin (Salisbury, J. L., A. T. Baron, B. Surek, and M. Melkonian. 1984. J. Cell Biol. 99:962-970) and the other directed against a 230-kD protein isolated from the infraciliary cytoskeletal lattice of the protozoan Polyplastron m., decorate the centrosome of human cultured cells, and identify one of the major centrosomal components revealed as a doublet of 62/64 kD. Moreover the nucleation reaction of microtubules, which can be efficiently produced on isolated centrosomes, is blocked by the antibodies, a result which strongly implicates the 62/64-kD protein in this centrosomal activity. We also show that the 62/64-kD protein remains insoluble in conditions (0.5 M KI or 8 M urea) which are capable of extracting most of the centrosomal proteins. Immunocytochemical localization by EM of isolated centrosomes revealed the association of this 62/64-kD doublet with the intercentriolar link and the pericentriolar lattice. Our results suggest that conservation of structure in the centrosome from divergent organisms could be matched by conservation of proteins and activity, evidence for the maintenance of a specific function, which could involve Ca2+, associated with the microtubule organizing centers.  相似文献   

15.
Presently, the question about the length of microtubules in the interphase cell became actual, since the parameters of dynamic instability of the plus end measured in vivo do not allow one to explain the rapid turnover of the long microtubule system. The problem may be solved if one of the following suppositions is assumed: either microtubules undergo rapid depolymerization from the minus end or they are on the average much shorter than it is usually considered. To check the last hypothesis, we have reconstructed microtubules using stereophotography of electron microscopic sections. Microtubules around the cell center in cultures of epithelial cells (kidney of pig embryo (PK) and bovine trachea (FBT)) and fibroblasts (MEF, primary mouse embryo fibroblasts, and L cells), as well as at the periphery of PK cells were studied. All in all, no less than 200 microtubules were found near the centrosome in each cell culture. From 2.5 to 8% microtubules were beyond the studied volume (4.0 x 5.5 x 1.5 microm). Most of microtubules in all studied cell lines were up to 1 microm and about 1/3 of them were 0.2-0.4 microm long. The mean length of microtubules surrounding the centrosome in different cell lines differed insignificantly and equalled 0.4-0.8 microm. In this case, the microtubules attached to the centrosome were on the average slightly shorter than the free ones. Thus, almost all microtubules around the centrosome are short, and the majority of those attached to it do not reach the cell periphery. A similar reconstruction of a part of the PK cell cytoplasm (10 x 35 microm) has shown that at the periphery, the mean length of microtubules is about 1.6 microm and most of them are 0.5 to 1.5 microm long. Thus, our data confirm the recent hypothesis of Vorobjev et al. (I. A. Vorobjev, T. M. Svitkina, and G. G. Borisy, J. Cell Sci. 110:2635-2645 (1997)) that most of microtubules in the cells are not connected with the centrosomes.  相似文献   

16.
During the course of preimplantation development, the cells of the mouse embryo undergo both a major subcellular reorganization (at the time of compaction) and, subsequently, a process of differentiation as the phenotypes of trophectoderm and inner cell mass cell types diverge. We have used antibodies specific for tyrosinated (Kilmartin, J. V., B. Wright, and C. Milstein. 1982. J. Cell Biol. 93:576-582) and acetylated (Piperno, G., and M. T. Fuller. 1985. J. Cell Biol. 101:2085-2094) alpha-tubulin in immunofluorescence studies and found that subsets of microtubules can be distinguished within and between cells during the course of these events. Whereas all microtubules contained tyrosinated alpha-tubulin, acetylated alpha-tubulin was detected only in a subpopulation, located predominantly in the cell cortices. Striking differences developed between the distribution of the two populations during the course of development. Firstly, whereas the microtubule population as a whole tends to redistribute towards the apical domain of cells as they polarize during compaction (Houliston, E., S. J. Pickering, and B. Maro. 1987. J. Cell Biol. 104:1299-1308), the microtubules recognized by the antiacetylated alpha-tubulin antibody became enriched in the basal part of the cell cortex. After asymmetric division of polarized cells to generate two distinct cell types (termed inside and outside cells) we found that, despite the relative abundance of microtubules in outside cells, acetylated microtubules accumulated preferentially in inside cells. Treatment with nocodazole demonstrated that within each cell type acetylated microtubules were the more stable ones; however, the difference in composition of the microtubule network between cell types was not accompanied by a greater stability of the microtubule network in inside cells.  相似文献   

17.
Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries (Brunner, D., and P. Nurse. 2000. Cell. 102:695-704; Komarova, Y.A., I.A. Vorobjev, and G.G. Borisy. 2002. J. Cell Sci. 115:3527-3539) may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition.  相似文献   

18.
Microtubules deliver positional signals and are required for establishing polarity in many different organisms and cell types. In Caenorhabditis elegans embryos, posterior polarity is induced by an unknown centrosome-dependent signal. Whether microtubules are involved in this signaling process has been the subject of controversy. Although early studies supported such an involvement (O'Connell, K.F., K.N. Maxwell, and J.G. White. 2000. Dev. Biol. 222:55-70; Wallenfang, M.R., and G. Seydoux. 2000. Nature. 408:89-92; Hamill, D.R., A.F. Severson, J.C. Carter, and B. Bowerman. 2002. Dev. Cell. 3:673-684), recent work involving RNA interference knockdown of tubulin led to the conclusion that centrosomes induce polarity independently of microtubules (Cowan, C.R., and A.A. Hyman. 2004. Nature. 431:92-96; Sonneville, R., and P. Gonczy. 2004. Development. 131: 3527-3543). In this study, we investigate the consequences of tubulin knockdown on polarity signaling. We find that tubulin depletion delays polarity induction relative to wild type and that polarity only occurs when a small, late-growing microtubule aster is visible at the centrosome. We also show that the process of a normal meiosis produces a microtubule-dependent polarity signal and that the relative levels of anterior and posterior PAR (partitioning defective) polarity proteins influence the response to polarity signaling. Our results support a role for microtubules in the induction of embryonic polarity in C. elegans.  相似文献   

19.
Regulated proteolysis is important for maintaining appropriate cellular levels of many proteins. The bulk of intracellular protein degradation is catalyzed by the proteasome. Recently, the centrosome was identified as a novel site for concentration of the proteasome and associated regulatory proteins (Wigley, W. C., Fabunmi, R. P., Lee, M. G., Marino, C. R., Muallem, S., DeMartino, G. N., and Thomas, P. J. (1999) J. Cell Biol. 145, 481-490). Here we provide evidence that centrosomes contain the active 26 S proteasome that degrades ubiquitinated-protein and proteasome-specific peptide substrates. Moreover, the centrosomes contain an ubiquitin isopeptidase activity. The proteolytic activity is ATP-dependent and is inhibited by proteasome inhibitors. Notably, treatment of cells with inhibitors of proteasome activity promotes redistribution of the proteasome and associated regulatory proteins to the centrosome independent of an intact microtubule system. These data provide biochemical evidence for active proteasomal complexes at the centrosome, highlighting a novel function for this organizing structure.  相似文献   

20.
The monoclonal antibody (anti-IFA) raised (Pruss et al., 1981, Cell 27:419-428) against an intermediate filament antigen, which is widespread throughout phylogeny, has been shown here to cross-react with higher plants. On immunoblotting, anti-IFA cross-reacted with proteins in homogenates of carrot suspension cells and of meristematic cells from onion root tips. A 50-kD cross-reactive protein was enriched in a fraction that consisted of detergent-insoluble bundles of 7-nm fibrils from carrot protoplasts (Powell et al., 1982, J. Cell Sci. 56:319-335). By use of indirect immunofluorescence, anti-IFA stained formaldehyde-fixed onion meristematic cells and carrot protoplasts in patterns approximating those obtained with monoclonal anti-tubulins. That anti-IFA was not recognizing plant tubulins was established by use of immunoblots of two-dimensional gels on which the proteins that comprised isolated fibrillar bundles and taxol-purified carrot tubulins had been separated. The two groups of proteins had different positional coordinates: anti-IFA recognized the fibrillar bundle proteins, and anti-tubulins recognized plant microtubule proteins with no cross-reaction to the heterologous proteins. Likewise, formaldehyde-fixed taxol microtubules from carrot cells could be stained with anti-tubulin but not with anti-IFA. It is concluded that an epitope common to intermediate filaments from animals co-distributes with microtubules in higher plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号