首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of apoptosis is critical for controlling tissue homeostasis and preventing tumor formation and growth. Reactive oxygen species (ROS) generation plays a key role in such regulation. Here, we describe a HIF-1 target, Vasn/ATIA (anti-TNFα-induced apoptosis), which protects cells against TNFα- and hypoxia-induced apoptosis. Through the generation of ATIA knockout mice, we show that ATIA protects cells from apoptosis through regulating the function of the mitochondrial antioxidant, thioredoxin-2, and ROS generation. ATIA is highly expressed in human glioblastoma, and ATIA knockdown in glioblastoma cells renders them sensitive to hypoxia-induced apoptosis. Therefore, ATIA is not only a HIF-1 target that regulates mitochondrial redox pathways but also a potentially diagnostic marker and therapeutic target in human glioblastoma.  相似文献   

2.
Thioredoxin-1 (Trx-1) is a small redox oncoprotein whose expression is increased in a number of human primary cancers where it is associated with aggressive tumor growth, inhibition of apoptosis and decreased patient survival. We report that Trx-1-transfected MCF-7 human breast cancer cells have increased expression of thioredoxin peroxidase-1 (TrxP-1) a peroxiredoxin family member that scavenges H(2)O(2) using Trx-1 as a source of reducing equivalents. Our work shows that TrxP-1 is more effective than selenium-dependent glutathione peroxidase in protecting cells against H(2)O(2) damage. Transfection of mouse WEHI7.2 lymphoma cells with human TrxP-1 or TrxP-2, but not TrxP-4, protects the cells against H(2)O(2) induced apoptosis but does not protect against apoptosis induced by dexamethasone, etoposide, or doxorubicin. The results show that an increase in TrxP-1 expression contributes to the protection against H(2)O(2) induced apoptosis caused by Trx-1, but does not protect against apoptosis induced by other agents.  相似文献   

3.
This report addresses the relation between Bcl-2 and mitochondrial membrane potential (DeltaPsi(m)) in apoptotic cell death. Rat pheochromocytoma (PC12) cells are differentiated into neuron-like cells with nerve growth factor (NGF). It is known that Bcl-2 can attenuate apoptosis induced by deprivation of neurotrophic factor. The protective effect of Bcl-2 has been correlated with preservation of DeltaPsi(m). Protonophores, such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), collapse the proton gradient across the mitochondrial inner membrane, resulting in a complete abolition of the mitochondrial membrane potential. Based on the analysis of morphology, of phosphatidylserine exposure and of nuclear fragmentation we conclude that FCCP induces apoptosis in PC12 cells, which can be prevented by overexpression of Bcl-2. To determine whether the cytoprotective effect of Bcl-2 is due to stabilization of DeltaPsi(m), we investigated the effect of Bcl-2 on changes in DeltaPsi(m), induced by FCCP in PC12 cells. We showed that treatment with FCCP induced a reduction in DeltaPsi(m), as assessed with the lipophilic cationic membrane potential-sensitive dye JC-1, and that Bcl-2 protects against FCCP-induced changes in NGF differentiated PC12 cells. Our data indicate that Bcl-2 protects against FCCP-induced cell death by stabilizing DeltaPsi(m).  相似文献   

4.
Human neuroblastoma cells, SH-SY5Y, contain relatively low levels of thioredoxin (Trx); thus, they serve favorably as a model for studying oxidative stress-induced apoptosis (Andoh, T., Chock, P. B., and Chiueh, C. C. (2001) J. Biol. Chem. 277, 9655-9660). When these neurotrophic cells were subjected to nonlethal 2-h serum deprivation, their neuronal nitric oxide synthase and Trx were up-regulated, and the cells became more tolerant of oxidative stress, indicating that NO may protect cells from serum deprivation-induced apoptosis. Here, the mechanism by which NO exerts its protective effects was investigated. Our results reveal that in SH-SY5Y cells, NO inhibits apoptosis through its ability to activate guanylate cyclase, which in turn activates the cGMP-dependent protein kinase (PKG). The activated PKG is required to protect cells from lipid peroxidation and apoptosis, to inhibit caspase-9 and caspase-3 activation, and to elevate the levels of Trx peroxidase-1 and Trx, which subsequently induces the expression of Bcl-2. Furthermore, active PKG promotes the elevation of c-Jun, phosphorylated MAPK/ERK1/2, and c-Myc, consistent with the notion that PKG enhances the expression of Trx through its c-Myc-, AP-1-, and PEA3-binding motifs. Elevation of Trx and Trx peroxidase-1 and Mn(II)-superoxide dismutase would reduce H(2)O(2) and O(2)(), respectively. Thus, the cytoprotective effect of NO in SH-SY5Y cells appears to proceed via the PKG-mediated pathway, and S-nitrosylation of caspases plays a minimal role.  相似文献   

5.
Generation of reactive oxygen species by damaged respiratory chain followed by the formation of cytochrome c (cyt c)-cardiolipin (CL) complex with peroxidase activity are early events in apoptosis. By quenching the peroxidase activity of cyt c-CL complexes in mitochondria, nitric oxide can exert anti-apoptotic effects. Therefore, mitochondria-targeted pro-drugs capable of gradual nitric oxide radical (NO) release are promising radioprotectants. Here we demonstrate that (2-hydroxyamino-vinyl)-triphenyl-phosphonium effectively accumulates in mitochondria, releases NO upon mitochondrial peroxidase reaction, protects mouse embryonic cells from irradiation-induced apoptosis and increases their clonogenic survival after irradiation. We conclude that mitochondria-targeted peroxidase-activatable NO-donors represent a new interesting class of radioprotectors.  相似文献   

6.
In the present study, the toxicity of yperite, SM, and its structural analogue mechlorethamine, HN2, was investigated in a human bronchial epithelial cell line 16HBE. Cell detachment was initiated by caspase-2 activation, down-regulation of Bcl-2 and loss of mitochondrial membrane potential. Only in detached cells, mustards induced apoptosis associated with increase in p53 expression, Bax activation, decrease in Bcl-2 expression, opening of the mitochondrial permeability transition pore, release of cytochrome c, caspase-2, -3, -8, -9 and -13 activation and DNA fragmentation. Apoptosis, occurring only in detached cells, could be recognized as anoikis and the mitochondrion, involved both in cell detachment and subsequent cell death, appears to be a crucial checkpoint. Based on our understanding of the apoptotic pathway triggered by mustards, we demonstrated that inhibition of the mitochondrial pathway by ebselen, melatonin and cyclosporine A markedly prevented mustard-induced anoikis, pointing to these drugs as interesting candidates for the treatment of mustard-induced airway epithelial lesions. This work was support by the Délégation Générale pour l’Armement (D.G.A./D.S.P. No. 95-151). A. Deniaud received a fellowship from Ligue contre le Cancer. C. Brenner is supported by the Association pour la Recherche sur le Cancer (ARC). The authors are grateful to D.C. Gruenert for providing us with the human bronchial epithelial cell line.  相似文献   

7.
Oxidative stress in retinal pigment epithelium (RPE) cells may contribute to the progression of age-related macular degeneration. Thymoquinone (TQ), an active component derived from Nigella sativa, possesses antioxidative effect. However, the role of TQ in RPE cells under oxidative stress condition remains unclear. The present study aimed to examine the protective effect of TQ against hydrogen peroxide (H2O2)-induced oxidative stress in human RPE cells. Our results showed that TQ improved the cell viability and apoptosis in H2O2-induced ARPE cells. We also found that the levels of reactive oxygen species and malondialdehyde induced by H2O2 were reduced after the pretreatment of TQ. In addition, the inhibitory effect of H2O2 on the glutathione (GSH) level and superoxide dismutase activity was markedly attenuated by TQ pretreatment. Moreover, TQ enhanced the activation of Nrf2/heme oxygenase 1 (HO-1) signaling pathway in H2O2-induced ARPE cells. Knockdown of Nrf2 abolished the protective effect of TQ on H2O2-induced oxidative damage. These results suggested that TQ protected ARPE cells from H2O2-induced oxidative stress and apoptosis via the Nrf2/HO-1 signaling pathway.  相似文献   

8.
Oxidative stress can cause injury in retinal endothelial cells. Salidroside is a strong antioxidative and cytoprotective supplement in Chinese traditional medicine. In this study, we investigated the effects of salidroside on H2O2-induced primary retinal endothelial cells injury. Salidroside decreased H2O2-induced cell death, and efficiently suppressed cellular ROS production, malondialdehyde generation, and cell apoptosis induced by H2O2 treatment. Salidroside induced the intracellular mRNA expression, protein expression, and enzymatic activities of catalase and Mn-SOD and increased the ratio of Bcl2/Bax. Our results demonstrated that salidroside protected retinal endothelial cells against oxidative injury through increasing the Bcl2/Bax signaling pathway and activation of endogenous antioxidant enzymes. This finding presents salidroside as an attractive agent with potential to attenuate retinopathic diseases.  相似文献   

9.
The present study was designed to investigate ex vivo the protective mechanisms of heat-shock response against H2O2-induced oxidative stress in peripheral blood mononuclear cells (PBMCs) of rats. Twenty-four hours later, heat-shock treatment was executed in vivo; rat PBMCs were collected and treated with H2O2. The accumulation of reactive oxygen species and the mitochondrial membrane potential were evaluated by intracellular fluorescent dHE and JC-1 dye staining, respectively, and expression of HSP72 and cytochrome c was detected by Western blot analysis. Cellular apoptosis was assayed by TUNEL staining and double staining of Annexin V and PI. The results showed that H2O2-induced oxidative stress leads to intracellular superoxide accumulation and collapse of the mitochondrial membrane potential in rat PBMCs. Moreover, cellular apoptosis was detected after H2O2 treatment, and the release of mitochondrial cytochrome c from mitochondria to cytosol was significantly enhanced. Heat-shock pretreatment decreases the accumulation of intracellular superoxide in PBMCs during H2O2-induced oxidative stress. Moreover, heat-shock treatment prevents the collapse of the mitochondrial membrane potential and cytochrome c release from mitochondria during H2O2-induced oxidative stress. In conclusion, mitochondria are critical organelles of the protective effects of heat-shock treatment. Cellular apoptosis during H2O2-induced oxidative stress is decreased by heat-shock treatment through a decrease in superoxide induction and preservation of the mitochondrial membrane potential.  相似文献   

10.
The aim of this study was to investigate the protective effect of inhibition of aquaporin-1 (AQP1) expression against aristolochic acid I (AA-I)-induced apoptosis. HK-2 cells impaired by AA-I were used in this study as the cell model of aristolochic acid nephropathy. Apoptosis was studied by different methods, including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assays, flow cytometry, and caspase 3 activity assays. We compared AA-I-mediated apoptosis in HK-2 cells with or without knockdown of AQP1 expression by RNA interference. MTT assays showed that AA-I inhibited the viability of HK-2 cells in a time- and concentration-dependent manner. Apoptosis was evidenced by the results of the Annexin V/propidium iodide assay and the occurrence of a sub-G1 peak in cell-cycle analysis. The activity of caspase 3 was found to have been increased by AA-I in a concentration-dependent manner. However, AQP1 RNA interference provided protection against injury in cells treated with AA-I (40 μM) for 24 h and attenuated the number of apoptotic cells. These results suggested that AQP1 plays an important role in AA-I-induced apoptosis and that inhibition of AQP1 expression may protect HK-2 cells from AA-I-induced apoptotic damage.  相似文献   

11.
Protein kinase CK2 (CK2) has long been implicated in the regulation of cell growth and proliferation. Its activity is generally elevated in rapidly proliferating tissues, and nuclear matrix (NM) is an important subnuclear locale of its functional signaling. In the prostate, nuclear CK2 is rapidly lost commensurate with induction of receptor-mediated apoptosis after growth stimulus withdrawal. By contrast, chemical-induced apoptosis in prostate cancer and other cells (by etoposide and diethylstilbestrol) evokes an enhancement in CK2 associated with the NM that appears to be because of translocation of CK2 from the cytoplasmic to the nuclear compartment. This shuttling of CK2 to the NM may reflect a protective response to chemical-mediated apoptosis. Supporting evidence for this was obtained by employing cells that were transiently transfected with various expression plasmids of CK2 (thereby expressing additional CK2) prior to treatment with etoposide or diethylstilbestrol. Cells transfected with the CK2alpha or CK2alphabeta showed significant resistance to chemical-mediated apoptosis commensurate with the corresponding elevation in CK2 in the NM. Transfection with CK2beta did not demonstrate this effect. These results suggest, for the first time, that besides the commonly appreciated function of CK2 in cell growth, it may also have a role in protecting cells against apoptosis.  相似文献   

12.
We have previously shown that GABA protects pancreatic islet cells against apoptosis and exerts anti-inflammatory effects. Notably, GABA inhibited the activation of NF-κB in both islet cells and lymphocytes. NF-κB activation is detrimental to beta cells by promoting apoptosis. However, the mechanisms by which GABA mediates these effects are unknown. Because the above-mentioned effects mimic the activity of sirtuin 1 (SIRT1) in beta cells, we investigated whether it is involved. SIRT1 is an NAD+-dependent deacetylase that enhances insulin secretion, and counteracts inflammatory signals in beta cells. We found that the incubation of a clonal beta-cell line (rat INS-1) with GABA increased the expression of SIRT1, as did GABA receptor agonists acting on either type A or B receptors. NAD+ (an essential cofactor of SIRT1) was also increased. GABA augmented SIRT1 enzymatic activity, which resulted in deacetylation of the p65 component of NF-κB, and this is known to interfere with the activation this pathway. GABA increased insulin production and reduced drug-induced apoptosis, and these actions were reversed by SIRT1 inhibitors. We examined whether SIRT1 is similarly induced in newly isolated human islet cells. Indeed, GABA increased both NAD+ and SIRT1 (but not sirtuins 2, 3 and 6). It protected human islet cells against spontaneous apoptosis in culture, and this was negated by a SIRT1 inhibitor. Thus, our findings suggest that major beneficial effects of GABA on beta cells are due to increased SIRT1 and NAD+, and point to a new pathway for diabetes therapy.  相似文献   

13.
To achieve malignancy, cancer cells convert numerous signaling pathways, with evasion from cell death being a characteristic hallmark. The cell death machinery represents an anti-cancer target demanding constant identification of tumor-specific signaling molecules. Control of mitochondrial radical formation, particularly superoxide interconnects cell death signals with appropriate mechanistic execution. Superoxide is potentially damaging, but also triggers mitochondrial cytochrome c release. While paraoxonase (PON) enzymes are known to protect against cardiovascular diseases, recent data revealed that PON2 attenuated mitochondrial radical formation and execution of cell death. Another family member, PON3, is poorly investigated. Using various cell culture systems and knockout mice, here we addressed its potential role in cancer. PON3 is found overexpressed in various human tumors and diminishes mitochondrial superoxide formation. It directly interacts with coenzyme Q10 and presumably acts by sequestering ubisemiquinone, leading to enhanced cell death resistance. Localized to the endoplasmic reticulum (ER) and mitochondria, PON3 abrogates apoptosis in response to DNA damage or intrinsic but not extrinsic stimulation. Moreover, PON3 impaired ER stress-induced apoptotic MAPK signaling and CHOP induction. Therefore, our study reveals the mechanism underlying PON3's anti-oxidative effect and demonstrates a previously unanticipated function in tumor cell development. We suggest PONs represent a novel class of enzymes crucially controlling mitochondrial radical generation and cell death.  相似文献   

14.
Mutations in the ceramide kinase-like gene (CERKL) are associated with severe retinal degeneration. However, the exact function of the encoded protein (CERKL) remains unknown. Here we show that CERKL interacts with mitochondrial thioredoxin 2 (TRX2) and maintains TRX2 in the reduced redox state. Overexpression of CERKL protects cells from apoptosis under oxidative stress, whereas suppressing CERKL renders cells more sensitive to oxidative stress. In zebrafish, CERKL protein prominently locates in the outer segment and inner segment of the photoreceptor of the retina. Knockdown of CERKL in the zebrafish leads to an increase of retinal cell death, including cone and rod photoreceptor degeneration. Signs of oxidative damage to macromolecules were also detected in CERKL deficient zebrafish retina. Our results show that CERKL interacts with TRX2 and plays a novel key role in the regulation of the TRX2 antioxidant pathway and, for the first time, provides an explanation of how mutations in CERKL may lead to retinal cell death.  相似文献   

15.
Glutamine plays a key role in intestinal growth and maintenance of gut function, and as we have shown protects the postischemic gut (Kozar RA, Scultz SG, Bick RJ, Poindexter BJ, Desoigne R, Weisbrodt NW, Haber MM, Moore FA. Shock 21: 433-437, 2004). However, the precise mechanisms of the gut protective effects of glutamine have not been well elucidated. In the present study, RNA microarray was performed to obtain differentially expressed genes in intestinal epithelial IEC-6 cells following either 2 mM or 10 mM glutamine. The result demonstrated that specificity protein 3 (Sp3) mRNA expression was downregulated 3.1-fold. PCR and Western blot confirmed that Sp3 expression was decreased by glutamine in a time- and dose-dependent fashion. To investigate the role of Sp3, Sp3 gene siRNA silencing was performed and apoptosis was assessed. Silencing of Sp3 demonstrated a significant increase in Bcl-2 and decrease in Bax protein expression, as well as a decrease in caspase-3, -8, and -9 protein expression and activity. The protein expression of apoptosis-related proteins after hypoxia/reoxygenation was similar to that of normoxia and correlated with a decrease in DNA fragmentation. Importantly, the addition of glutamine to Sp3-silenced cells did not further lessen apoptosis, suggesting that Sp3 plays a major role in the inhibitory effect of glutamine on apoptosis. This novel finding may explain in part the gut-protective effects of glutamine.  相似文献   

16.
17.
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.  相似文献   

18.
AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells.METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine(a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species(ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death.  相似文献   

19.
The physiological significance of the selenium-independent glutathione peroxidase (GPx) activity of glutathione S-transferases (GSTs), associated with the major Alpha class isoenzymes hGSTA1-1 and hGSTA2-2, is not known. In the present studies we demonstrate that these isoenzymes show high GPx activity toward phospholipid hydroperoxides (PL-OOH) and they can catalyze GSH-dependent reduction of PL-OOH in situ in biological membranes. A major portion of GPx activity of human liver and testis toward phosphatidylcholine hydroperoxide (PC-OOH) is contributed by the Alpha class GSTs. Overexpression of hGSTA2-2 in K562 cells attenuates lipid peroxidation under normal conditions as well as during the oxidative stress and confers about 1.5-fold resistance to these cells from H(2)O(2) cytotoxicity. Treatment with 30 microm H(2)O(2) for 48 h or 40 microm PC-OOH for 8 h causes apoptosis in control cells, whereas hGSTA2-2-overexpressing cells are protected from apoptosis under these conditions. In control cells, H(2)O(2) treatment causes an early (within 2 h), robust, and persistent (at least 24 h) activation of JNK, whereas in hGSTA2-2-overexpressing cells, only a slight activation of JNK activity is observed at 6 h which declines to basal levels within 24 h. Caspase 3-mediated poly(ADP-ribose) polymerase cleavage is also inhibited in cells overexpressing hGSTA2-2. hGSTA2 transfection does not affect the function of antioxidant enzymes including GPx activity toward H(2)O(2) suggesting that the Alpha class GSTs play an important role in regulation of the intracellular concentrations of the lipid peroxidation products that may be involved in the signaling mechanisms of apoptosis.  相似文献   

20.
Insulin receptor substrates (IRS)-1 and -2 are major substrates of insulin and type I insulin-like growth factor (IGF-I) receptor (IGF-IR) signaling. In this study, SH-EP human neuroblastoma cells are used as a model system to examine the differential roles of IRS-1 and IRS-2 on glucose-mediated apoptosis. In the presence of high glucose, IRS-1 underwent caspase-mediated degradation, followed by focal adhesion kinase (FAK) and Akt degradation and apoptosis. IRS-2 expression blocked all these changes whereas IRS-1 overexpression had no effect. In parallel, IRS-2, but not IRS-1, overexpression enhanced IGF-I-mediated Akt activation without affecting extracellular regulated kinase signaling. While IRS-1 was readily degraded by caspases, hyperglycemia-mediated IRS-2 degradation was unaffected by caspase inhibitors but blocked by proteasome and calpain inhibitors. Our data suggest that the differential degradation of IRS-1 and IRS-2 contributes to their distinct modes of action and the increased neuroprotective effects of IRS-2 in this report are due, in part, to its resistance to caspase-mediated degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号