首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The O6-alkylguanine DNA alkyltransferase (AGT) is a highly conserved protein responsible for direct repair of alkylated guanine and to a lesser degree thymine bases. While specific DNA lesion-bound complexes in crystal structures consist of monomeric AGT, several solution studies have suggested that cooperative DNA binding plays a role in the physiological activities of AGT. Cooperative AGT–DNA complexes have been described by theoretical models, which can be tested by atomic force microscopy (AFM). Direct access to structural features of AGT–DNA complexes at the single molecule level by AFM imaging revealed non-specifically bound, cooperative complexes with limited cluster length. Implications of cooperative binding in AGT–DNA interactions are discussed.  相似文献   

2.
Two temperature-sensitive mutations in the hsdS gene, which encodes the DNA specificity subunit of the type IA restriction-modification system EcoKI, designated Sts1 (Ser(340)Phe) and Sts2 (Ala(204)Thr) had a different impact on restriction-modification functions in vitro and in vivo. The enzyme activities of the Sts1 mutant were temperature-sensitive in vitro and were reduced even at 30 degrees C (permissive temperature). Gel retardation assays revealed that the Sts1 mutant had significantly decreased DNA binding, which was temperature-sensitive. In contrast the Sts2 mutant did not show differences from the wild-type enzyme even at 42 degrees C. Unlike the HsdSts1 subunit, the HsdSts2 subunit was not able to compete with the wild-type subunit in assembly of the restriction enzyme in vivo, suggesting that the Sts2 mutation affects subunit assembly. Thus, it appears that these two mutations map two important regions in HsdS subunit responsible for DNA-protein and protein-protein interactions, respectively.  相似文献   

3.
With the advent of synthetic biology and cell engineering, the demand for large synthetic DNA fragments has been steadily increasing. Consequently, a number of multi-fragment cloning technologies optimized for the assembly of sizable DNA constructs have been developed. Still, screening for the right clone can be tedious because the high incidence of illegitimate assembly results in a relatively large proportion of missing or shuffled DNA elements. To mitigate this risk, we have developed a strategy that reduces the rate of fragment mis-assembly and is compatible with a variety of cloning methodologies. The approach is based on the positive selection of truncated plasmid markers, which are rendered active by providing their missing sequences during the assembly process. The method has been successfully validated in the context of complex in vivo and in vitro homologous recombination workflows, but it could be readily adapted to other cloning strategies, including those based on restriction endonucleases.  相似文献   

4.
DNA is a widely used biopolymer for the construction of nanometer‐scale objects due to its programmability and structural predictability. One long‐standing goal of the DNA nanotechnology field has been the construction of three‐dimensional DNA crystals. We previously determined the X‐ray crystal structure of a DNA 13‐mer that forms a continuously hydrogen bonded three‐dimensional lattice through Watson‐Crick and non‐canonical base pairs. Our current study sets out to understand how the sequence of the Watson‐Crick duplex region influences crystallization of this 13‐mer. We screened all possible self‐complementary sequences in the hexameric duplex region and found 21 oligonucleotides that crystallized. Sequence analysis showed that one specific Watson‐Crick pair influenced the crystallization propensity and the speed of crystal self‐assembly. We determined X‐ray crystal structures for 13 of these oligonucleotides and found sequence‐specific structural changes that suggests that this base pair may serve as a structural anchor during crystal assembly. Finally, we explored the crystal self‐assembly and nucleation process. Solution studies indicated that these oligonucleotides do not form base pairs in the absence of cations, but that the addition of divalent cations leads to rapid self‐assembly to higher molecular weight complexes. We further demonstrate that crystals grown from mixtures of two different oligonucleotide sequences contain both oligonucleotides. These results suggest that crystal self‐assembly is nucleated by the formation of the Watson‐Crick duplexes initiated by a simple chemical trigger. This study provides new insight into the role of sequence for the assembly of periodic DNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 618–626, 2015.  相似文献   

5.
6.

Background

In a strategy termed “Protease Targeting”, retroviral vectors carrying an EGF infectivity‐blocking domain fused to the N‐terminus of the envelope SU via a MMP (matrix metalloproteinase)‐cleavable linker were successfully used to target gene delivery to EGF receptor‐(EGF‐R‐)positive tumour cells over‐expressing MMPs. In the current study, we aimed to investigate whether this strategy could be applied to (a) limit the cytotoxic activity of a hyperfusogenic GALV therapeutic gene, and (b) enhance the immune‐stimulatory properties of GALV via local, MMP‐mediated release human granulocyte‐macrophage colony stimulating factor (GM‐CSF).

Methods

We generated GALV envelope expression constructs displaying EGF or GM‐CSF blocking ligands at the N‐terminus of GALV envelope SU via a non‐cleavable, Factor Xa protease or MMP‐cleavable linker and investigated their cytotoxicity on MMP‐positive and negative cell lines.

Results

The unmodified hyperfusogenic GALV envelope was cytotoxic to all cell lines tested. The non‐cleavable linker GALV envelope constructs caused no cytotoxicity, demonstrating efficient inhibition by the displayed domains. Moderate activation of fusion of the protease‐cleavable linker constructs was observed in all cell lines, regardless of their level of MMP expression and of the specificity of the linker. High levels of the ‘blocking domain’ were detected in the cell supernatants due to dissociation of the surface unit (SU) from the transmembrane (TM) component of the GALV envelope glycoprotein TM.

Conclusions

Unlike protease targeting in the context of retroviral vectors, protease activation of the cytotoxicity of GALV envelope by cleavage of a fusion blocking ligand at the cell surface does not appear to be specifically mediated by cell‐surface MMPs. In addition, shedding of the SU‐fusion protein from the TM limits the general applicability of this strategy for cancer gene therapy. Specificity of cell‐cell fusion mediated by GALV envelope cannot be manipulated in the same fashion as virus‐cell fusion. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

7.
8.
9.
10.
In the current study we developed a process for the capture of pDNA exploiting the ability of aqueous two-phase systems to differentiate between different forms of DNA. In these systems scpDNA exhibits a near quantitative partitioning in the salt-rich bottom phase. The successive recovery from the salt rich bottom phase is accomplished by a novel membrane step. The polish operation to meet final purity demands is again based on a system exploiting a combination of the denaturation of the nucleic acids present, specific renaturation of scpDNA, and an ATP system able to differentiate between the renatured scpDNA and the denatured contaminants such as ocpDNA and genomic host DNA. This polish step thus allows a rapid and efficient separation of scpDNA from contaminating nucleic acids which up to date otherwise only can be accomplished with much more cumbersome chromatographic methods. In a benchmark comparison, it could be shown that the newly developed process exhibits a comparable yield to an industrial standard process while at the same time showing superior performance in terms of purity and process time. Additionally it could be shown that the developed polish procedure can be applied as a standalone module to support already existing processes.  相似文献   

11.
为避免内质网中未折叠蛋白质的过度累积,真核细胞能激活一系列信号通路来维持内质网稳态,这个过程称为内质网应激。在骨生长发育中,适宜的内质网应激有助于成骨细胞、破骨细胞和软骨细胞的生长,可以促进骨髓间充质干细胞向成骨细胞分化。而过度的内质网应激会抑制成骨分化,严重的甚至导致骨质疏松、成骨不全等相关骨病的发生。内质网应激时可激活未折叠蛋白质反应,其主要是通过PERK/eIF2α/ATF4信号通路,上调转录激活因子4(ATF4)的表达。ATF4位于许多成骨分化调节因子的下游,是促进成骨分化的关键因子,在内质网应激对成骨分化的调节中发挥重要作用。在成骨分化过程中,适宜的内质网应激能通过激活PERK信号通路,诱导ATF4表达增加,进而上调骨钙素、骨涎蛋白等成骨所必需基因的表达,促进成骨分化。过度的内质网应激会激活ATF4/CHOP促凋亡途径,并导致Bax、胱天蛋白酶等凋亡信号分子的大量产生,进而导致细胞凋亡,抑制成骨分化。由于ATF4在ERS和成骨分化中的重要作用,ATF4在骨质疏松、成骨不全等骨相关疾病的治疗中具有重要意义。本文通过综述ATF4在内质网应激调控成骨分化中的作用机制,为相关骨性疾病治疗提供理论依据。  相似文献   

12.
Oppositely charged natural DNA and chitosan (CS) were assembled into (CS/DNA)n layer-by-layer films on electrode surface, and Ru(bpy)32+ (bpy = bipyridyl) in solution was used as electroactive catalyst to detect damage of DNA in the films after incubation of the films in ferritin/AA/H2O2 solutions (AA = ascorbic acid). The mechanism of DNA damage caused by the ferritin/AA/H2O2 system was similar to that of Fenton reaction, where the reaction of ferritin with AA would release some Fe(II) ions from ferritin and the following reaction between Fe(II) ions and H2O2 would produce hydroxyl radical, which could induce DNA oxidative damage. This system provided an in vitro model to imitate the DNA damage indirectly induced by ferritin in real bio-systems. In addition, formamidopyrimidine DNA glycosylase (Fpg), a key endonuclease enzyme in repair of oxidatively damaged DNA, was used to amplify the DNA damage caused by ferritin/AA/H2O2 system through conversion of oxidative purine bases into single-strand breaks. The high sensitivity of electrocatalytic method with Ru(bpy)32+ as the catalyst in detection of DNA damage and the magnification function of Fpg may provide a novel idea to detect natural DNA lesion sensitively.  相似文献   

13.
14.
Summary Human papillomavirus (HPV) E6 and E7 are consistently expressed and are responsible for the malignant transformation of HPV-associated lesions. Thus, E6 and E7 represent ideal targets for therapeutic HPV vaccine development. We have previously used the gene gun approach to test several intracellular targeting and intercellular spreading strategies targeting HPV-16 E7. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat shock protein 70 (HSP70), calreticulin (CRT) and herpes simplex virus type 1 (HSV-1) VP22 proteins. All of these strategies have been shown to be capable of enhancing E7-DNA vaccine potency. In the current study, we have characterized DNA vaccines employing these intracellular targeting or intercellular spreading strategies targeting HPV-16 E6 for their ability to generate E6-specific CD8+ T cell immune responses and antitumor effects against an E6-expressing tumor cell line, TC-1, in C57BL/6 mice. We found that all the intracellular targeting strategies (CRT, LAMP-1, HSP70) as well as the intercellular spreading strategy (VP22) were able to enhance E6 DNA vaccine potency, although the orientation of HSP70 linked to E6 antigen in the E6 DNA vaccine appears to be important for the HSP70 strategy to work. The enhanced E6-specific CD8+ T cell immune response in vaccinated mice also translated into potent antitumor effects against TC-1 tumor cells. Our data indicate that all of the intracellular targeting and intercellular spreading strategies that have been shown to enhance E7 DNA vaccine potency were also able to enhance E6 DNA vaccine potency.  相似文献   

15.
《Molecular cell》2023,83(5):787-802.e9
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

16.
ATF4在内质网应激调控成骨分化中的作用   总被引:1,自引:0,他引:1  
为避免内质网中未折叠蛋白质的过度累积,真核细胞能激活一系列信号通路来维持内质网稳态,这个过程称为内质网应激。在骨生长发育中,适宜的内质网应激有助于成骨细胞、破骨细胞和软骨细胞的生长,可以促进骨髓间充质干细胞向成骨细胞分化。而过度的内质网应激会抑制成骨分化,严重的甚至导致骨质疏松、成骨不全等相关骨病的发生。内质网应激时可激活未折叠蛋白质反应,其主要是通过PERK/eIF2α/ATF4信号通路,上调转录激活因子4(ATF4)的表达。ATF4位于许多成骨分化调节因子的下游,是促进成骨分化的关键因子,在内质网应激对成骨分化的调节中发挥重要作用。在成骨分化过程中,适宜的内质网应激能通过激活PERK信号通路,诱导ATF4表达增加,进而上调骨钙素、骨涎蛋白等成骨所必需基因的表达,促进成骨分化。过度的内质网应激会激活ATF4/CHOP促凋亡途径,并导致Bax、胱天蛋白酶等凋亡信号分子的大量产生,进而导致细胞凋亡,抑制成骨分化。由于ATF4在ERS和成骨分化中的重要作用,ATF4在骨质疏松、成骨不全等骨相关疾病的治疗中具有重要意义。本文通过综述ATF4在内质网应激调控成骨分化中的作用机制,为相关骨性疾病治疗提供理论依据。  相似文献   

17.
18.
19.
刘昭祥  刘森 《生物工程学报》2023,39(9):3615-3627
蛋白降解靶向嵌合体(proteolysis targeting chimera,PROTAC)是一种可以同时结合E3连接酶和靶蛋白的异双功能小分子,能够借助泛素-蛋白酶体系统特异性降解靶蛋白。目前PROTAC药物大多处于临床试验阶段,配体主要为非共价化合物,具有克服耐药性、降解“不可用药”靶蛋白的优势,但非共价配体会使PROTAC产生钩效应(hook effect),影响药效发挥。而共价配体凭借自身优势,可以避免该现象的发生,对于PROTAC的发展具有极大的帮助。本文总结了临床前及临床研究阶段,PROTAC分子在核内蛋白、跨膜蛋白和胞浆蛋白3种蛋白靶点中的应用,并以此为基础进行了讨论与展望,以期为今后PROTAC的发展提供一定的研究思路和参考。  相似文献   

20.
N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号