首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
如何有效描述与分析复杂的基因调控网络(GRN)是生物学家研究基因表达调控机制的关键步骤.现有大部分方法在建模过程中忽略了生物中广泛存在的协同作用,模型预测结果与实际生物行为之间存在误差.基于混合函数Petri网(HFPN)理论提出了一种对基因调控网络进行定量分析的新方法.首先简要介绍GRN与HFPN的基础理论,然后为HFPN引入两类新元素:逻辑库所与逻辑变迁,描述基因调控网络的逻辑规则以及转录因子间的协同作用,最后构建海胆endo16基因调控网络的Petri网模型,并预测模型在不同位点发生突变时的基因表达水平变化.分析结果与文献实验数据相一致,验证了方法的正确性.  相似文献   

2.
The Xylella fastidiosa comparative genomic database is a scientific resource with the aim to provide a user-friendly interface for accessing high-quality manually curated genomic annotation and comparative sequence analysis, as well as for identifying and mapping prophage-like elements, a marked feature of Xylella genomes. Here we describe a database and tools for exploring the biology of this important plant pathogen. The hallmarks of this database are the high quality genomic annotation, the functional and comparative genomic analysis and the identification and mapping of prophage-like elements. It is available from web site http://www.xylella.lncc.br.  相似文献   

3.
The Gibbs sampling method has been widely used for sequence analysis after it was successfully applied to the problem of identifying regulatory motif sequences upstream of genes. Since then, numerous variants of the original idea have emerged: however, in all cases the application has been to finding short motifs in collections of short sequences (typically less than 100 nucleotides long). In this paper, we introduce a Gibbs sampling approach for identifying genes in multiple large genomic sequences up to hundreds of kilobases long. This approach leverages the evolutionary relationships between the sequences to improve the gene predictions, without explicitly aligning the sequences. We have applied our method to the analysis of genomic sequence from 14 genomic regions, totaling roughly 1.8 Mb of sequence in each organism. We show that our approach compares favorably with existing ab initio approaches to gene finding, including pairwise comparison based gene prediction methods which make explicit use of alignments. Furthermore, excellent performance can be obtained with as little as four organisms, and the method overcomes a number of difficulties of previous comparison based gene finding approaches: it is robust with respect to genomic rearrangements, can work with draft sequence, and is fast (linear in the number and length of the sequences). It can also be seamlessly integrated with Gibbs sampling motif detection methods.  相似文献   

4.
Gene discovery using the maize genome database ZmDB   总被引:9,自引:0,他引:9       下载免费PDF全文
Zea mays DataBase (ZmDB) is a repository and analysis tool for sequence, expression and phenotype data of the major crop plant maize. The data accessible in ZmDB are mostly generated in a large collaborative project of maize gene discovery, sequencing and phenotypic analysis using a transposon tagging strategy and expressed sequence tag (EST) sequencing. ESTs constitute most of the current content. Database search tools, convenient links to external databases, and novel sequence analysis programs for spliced alignment are provided and together serve as an efficient protocol for gene discovery by sequence inspection. ZmDB can be accessed at http://zmdb. iastate.edu. ZmDB also provides web-based ordering of materials generated in the project, including EST and genomic DNA clones, seeds of mutant plants and microarrays of amplified EST and genomic DNA sequences.  相似文献   

5.
With the availability of the nearly complete genomic sequence of C. elegans, the first multicellular organism to be sequenced, molecular biology has definitely entered the postgenomic era. Annotation of the genomic sequence, which refers to identifying the genes and other biologically relevant sections of the genome, is an important and nontrivial next step. A first‐pass annotation will be necessarily incomplete but will drive further biological experiments, which in turn will help to annotate the genome better. Given the scale of the genome sequence analysis, it is clear that the annotation should be automated as much as possible without sacrificing the quality of analysis. In this work, we outline our approach to identifying the protein kinases of C. elegans from the genomic sequence. We describe new tools we have developed for analysis, management and visualization of genomic data. By developing modular and scalable solutions, this study has provided a framework for future analysis of the Drosophila and human genomes. J. Cell. Biochem. 80:181–186, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

6.
A Mycoplasma agalactiae genomic fragment carrying four vsp-related genes (designated avg: agalactiae variable genes) was cloned, sequenced and compared to the vspA gene of Mycoplasma bovis. The following features were revealed: (i) the presence of a highly conserved vsp 5' upstream region; (ii) a highly homologous vsp N-terminal end encoding a putative lipoprotein signal sequence; (iii) sequence divergence of the rest of the mature proteins. By using avg specific probes in Southern blot analysis of genomic DNAs of M. agalactiae strains as well as of isolates from infected animals, marked DNA polymorphism of avg fragments was demonstrated. In addition, the avg genomic fingerprints were monitored for a period of 7 months, in isolates of M. agalactiae from an individual chronically infected animal. The results provided evidence that a chromosomal region of M. agalactiae, carrying vsp-related genes, undergoes rearrangements in vivo in the natural animal host during the course of infection.  相似文献   

7.
Comparative sequence analysis is contributing to the identification and characterization of genomic regulatory regions with functional roles. It is effective because functionally important regions tend to evolve at a slower rate than do less important regions. The choice of species for comparative analysis is crucial: shared ancestry of a clade of species facilitates the discovery of genomic features important to that clade, whereas increased sequence divergence improves the resolution at which features can be discovered. Recent studies suggest that comparative analyses are useful for all branches of life and that, in the near future, large-scale mammalian comparative sequence analysis will provide the best approach for the comprehensive discovery of human regulatory elements.  相似文献   

8.
9.
With the availability of the nearly complete genomic sequence of C. elegans, the first multicellular organism to be sequenced, molecular biology has definitely entered the postgenomic era. Annotation of the genomic sequence, which refers to identifying the genes and other biologically relevant sections of the genome, is an important and nontrivial next step. A first-pass annotation will be necessarily incomplete but will drive further biological experiments, which in turn will help to annotate the genome better. Given the scale of the genome sequence analysis, it is clear that the annotation should be automated as much as possible without sacrificing the quality of analysis. In this work, we outline our approach to identifying the protein kinases of C. elegans from the genomic sequence. We describe new tools we have developed for analysis, management and visualization of genomic data. By developing modular and scalable solutions, this study has provided a framework for future analysis of the Drosophila and human genomes.  相似文献   

10.
Molecular analysis of GISTs: evaluation of sequencing and dHPLC   总被引:3,自引:0,他引:3  
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract and are characterized by mutations in the proto-oncogene KIT (c-kit). To date, the detection of genomic alterations of the c-kit gene has been based mostly on direct sequencing. However, sequencing is an expensive and time-consuming approach. Since the technology of WAVE DNA Fragment Analysis System (Transgenomic, Inc., Worcester, MA) (dHPLC) is available in our laboratory, we decided to evaluate its use. Sixteen patients with small/large intestine, stomach tumors were included in the study. Immunohistochemical evaluation was performed on formalin-fixed, paraffin-embedded specimens with the polyclonal antibody CD117 for the KIT protein. After DNA extraction and isolation from paraffin-embedded sections, a nested PCR approach was applied to amplify sequences of exon 11 of the c-kit gene. dHPLC and the ABI Prism 310 Genetic Analyzer (Applied Biosystems, Bedford, MA) were used respectively for screening and identification of genomic alterations. Immunohistochemical analysis revealed strong and diffuse KIT expression in each of the 16 paraffin-embedded sections examined. dHPLC analysis in two temperatures showed the presence of genomic alterations in 8 out of 16 (50%) samples examined. Subsequently, sequence analysis of exon 11 in those samples revealed c-kit alterations in only 8 out of 16 (50%) samples. These were five deletions, one of which was an in-frame deletion one-point mutation and one insertion. Furthermore, the sensitivity of both methods was compared by using different mixtures of a wild-type and a sample with a deletion in exon 11. dHPLC was shown to be able to detect genomic alterations in all four different sample mixtures, whereas with sequence analysis genomic alterations were detected only in the 1:2 and 1:4 sample mixtures. In conclusion, we showed that dHPLC is an efficient and accurate, as well as a more sensitive, method for screening of genomic alterations in exon 11 of the c-kit gene, compared to sequence analysis.  相似文献   

11.
The first step of any molecular phylogenetic analysis is the selection of the species and sequences to be included, the taxon sampling. Already here different pitfalls exist. Sequences can contain errors, annotations in databases can be inaccurate and even the taxonomic classification of a species can be wrong. Usually, these artefacts become evident only after calculation of the phylogenetic tree. Following, the taxon sampling has to be corrected iteratively. This can become tedious and time consuming, as in most cases the taxon sampling is de-coupled from the further steps of the phylogenetic analysis. Here, we present the ITS2 Workbench (http://its2.bioapps.biozentrum.uni-wuerzburg.de/), which eliminates this problem by a tight integration of taxon sampling, secondary structure prediction, multiple alignment and phylogenetic tree calculation. The ITS2 Workbench has access to more than 280,000 ITS2 sequences and their structures provided by the ITS2 database enabling sequence-structure based alignment and tree reconstruction. This allows the interactive improvement of the taxon sampling throughout the whole phylogenetic tree reconstruction process. Thus, the ITS2 Workbench enables a fast, interactive and iterative taxon sampling leading to more accurate ITS2 based phylogenies.  相似文献   

12.
Tomato (Solanum lycopersicum L., Solanaceae) is an excellent model plant for genomic research of solanaceous plants, as well as for studying the development, ripening, and metabolism of fruit. In 2003, the International Solanaceae Project (SOL, www.sgn.cornell.edu ) was initiated by members from more than 30 countries, and the tomato genome-sequencing project is currently underway. Genome sequence of tomato obtained by this project will provide a firm foundation for forthcoming genomic studies such as the comparative analysis of genes conserved among the Solanaceae species and the elucidation of the functions of unknown tomato genes. To exploit the wealth of the genome sequence information, there is an urgent need for novel resources and analytical tools for tomato functional genomics. Here, we present an overview of the development of genetic and genomic resources of tomato in the last decade, with a special focus on the activities of Japan SOL and the National Bio-Resource Project in the development of functional genomic resources of a model cultivar, Micro-Tom.Key Words: Expressed sequence tag, full-length cDNA, genome sequence, mutant resource, Micro-Tom, JSOL, Solanum lycopersicum, tomato.  相似文献   

13.
PartiGene--constructing partial genomes   总被引:4,自引:0,他引:4  
Expressed sequence tags (ESTs) offer a low-cost approach to gene discovery and are being used by an increasing number of laboratories to obtain sequence information for a wide variety of organisms. The challenge lies in processing and organizing this data within a genomic context to facilitate large scale analyses. Here we present PartiGene, an integrated sequence analysis suite that uses freely available public domain software to (1) process raw trace chromatograms into sequence objects suitable for submission to dbEST; (2) place these sequences within a genomic context; (3) perform customizable first-pass annotation of the data; and (4) present the data as HTML tables and an SQL database resource. PartiGene has been used to create a number of non-model organism database resources including NEMBASE (http://www.nematodes.org) and LumbriBase (http://www.earthworms.org/). The packages are readily portable, freely available and can be run on simple Linux-based workstations. AVAILABILITY: PartiGene is available from http://www.nematodes.org/PartiGene and also forms part of the EST analysis software, associated with the Natural Environmental Research Council (UK) Bio-Linux project (http://envgen.nox.ac.uk/biolinux.html).  相似文献   

14.
用一种植物的总基因组DNA与近缘或远缘物种的染色体杂交,可以研究植物近缘或远缘物种基因组进化关系。以拟高粱总基因组DNA为探针,对栽培高粱、甜高粱基因组进行杂交,结果表明栽培高粱、甜高粱和拟高粱基因组中重复序列存在很大的同源性,基因组进化关系表现出保守性。栽培高粱与拟高粱基因组间重复序列的同源性要比甜高粱与拟高粱间重复序列的同源性高。  相似文献   

15.
16.
17.
Sau3A digestion of human G + C-rich DNA molecules yields discrete bands of approximately 70 and 140 base-pairs, under-represented in A + T-rich DNA molecules and in total DNA. We have cloned the 70 base-pair band in a plasmid vector and isolated a representative recombinant clone that identifies a new human family of repeats, the Sau3A family. The new family has been characterized for a number of parameters: genomic organization; reiteration frequency; sequence analysis; and distribution in a human genomic library. The Sau3A sequence (68 base-pairs in length, 53% G + C) is present in approximately 4 X 10(4) copies/haploid genome; the family is characterized by a cluster organization and is confined to a limited fraction (0.5%) of phages of a human genomic library. Southern blot hybridizations of the cloned sequence to restriction digests of total human DNA and of isolated genomic clones does not show the involvement of Sau3A blocks in long-range periodicities for any of the enzymes tested. The data suggest either a high sequence variability in the family or a complex organization of Sau3A sequence domains.  相似文献   

18.
SUMMARY: Insertional mutagenesis is a powerful method for gene discovery. To identify the location of insertion sites in the genome linker based polymerase chain reaction (PCR) methods (such as splinkerette-PCR) may be employed. We have developed a web application called iMapper (Insertional Mutagenesis Mapping and Analysis Tool) for the efficient analysis of insertion site sequence reads against vertebrate and invertebrate Ensembl genomes. Taking linker based sequences as input, iMapper scans and trims the sequence to remove the linker and sequences derived from the insertional mutagen. The software then identifies and removes contaminating sequences derived from chimeric genomic fragments, vector or the transposon concatamer and then presents the clipped sequence reads to a sequence mapping server which aligns them to an Ensembl genome. Insertion sites can then be navigated in Ensembl in the context of genomic features such as gene structures. iMapper also generates test-based format for nucleic acid or protein sequences (FASTA) and generic file format (GFF) files of the clipped sequence reads and provides a graphical overview of the mapped insertion sites against a karyotype. iMapper is designed for high-throughput applications and can efficiently process thousands of DNA sequence reads. AVAILABILITY: iMapper is web based and can be accessed at http://www.sanger.ac.uk/cgi-bin/teams/team113/imapper.cgi.  相似文献   

19.
SUMMARY: MAVG is a software tool for finding k non-overlapping maximum-average segments that are sufficiently long in a given sequence of real numbers, for any k > 0. It has applications in several areas of biomolecular sequence analysis including locating GC-rich regions and CpG islands in a genomic sequence, and annotating multiple sequence alignments. AVAILABILITY: http://iubio.bio.indiana.edu/soft/molbio/pattern/cpg_islands/.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号