首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The retinal pigment epithelium (RPE) of the red-backed salamander (Plethodon cinerus) consists of a single layer of large squamous shaped cells. The RPE cells are but minimally infolded basally (sclerally) but show many large apical (vitreal) processes interdigitating with the rod outer segments. These epithelial cells are joined laterally by prominent tight junctions located in the mid region of the cells. Internally smooth endoplasmic reticulum is very plentiful while rough endoplasmic reticulum is not. Polysomes, small dense mitochondria and small round to oval melanosomes are plentiful. Golgi zones and lysosome-like bodies are also present as are phagosomes of outer segment material and myeloid bodies. The RPE cell nucleus is large and vesicular. It is felt that the melanosomes undergo retinomotor movements but as only light-adapted specimens were examined it is not known how extensive are these movements. Bruch's membrane or complexus basalis shows the typical pentalaminate structure noted for most vertebrates. The choriocapillaris is a single layer of large anastomosing capillaries which are minimally fenestrated facing Bruch's membrane.  相似文献   

2.
Summary The morphology of the retinal pigment epithelium (RPE) and adjacent choroid has been investigated by electron microscopy in the domestic pig. The RPE consists of a single layer of cells which are columnar posteriorly but become cuboidal and even squamous moving peripherally in the fundus. The cells of the RPE layer regardless of location display basal (scleral) infoldings and apical (vitreal) processes and are joined laterally by junctional complexes. Throughout the retina the epithelial cells are rich in smooth endoplasmic reticulum and mitochondria but less so in rough endoplasmic reticulum and polysomes. The epithelial nucleus is vesicular and basally located. In the superior fundus an area of the RPE is very lightly pigmented and richer in lysosomes than is this layer in the inferior and peripheral fundus. The choroid overlying this area is also lightly pigmented and contains much collagen in a lamellar arrangement. This region may represent a vestigial tapetum fibrosum. Bruch's membrane is slightly thicker posteriorly but is everywhere seen to have a pentalaminate substructure. The choriocapillaris is a single layer of large capillaries which show numerous fenestrations facing the RPE. In the superior fundus the choriocapillaris is also highly fenestrated facing the choroid.  相似文献   

3.
The morphology of the retinal epithelium (RPE), choriocapillaris and Bruch's membrane (complexus basalis) has been investigated by light and electron microscopy in an elasmobranch, the southern fiddler ray or guitarfish (Trygonorhina fasciata). The RPE consists of a single layer of cuboidal cells which display basal (scleral) infoldings as well as numerous apical (vitreal) finger-like processes which interdigitate with the photoreceptor outer segments. The lateral cell borders are relatively smooth and are joined in the mid-region by a series of tight junctions. Internally the RPE nucleus is large, vesicular and centrally located. Smooth endoplasmic reticulum (SER) is abundant while rough endoplasmic reticulum (RER) is scarce. Polysomes are however widespread and mitochondria are plentiful. Two unusual organelles are also noted. One consists of a membrane bound array of tubules while the other is a membrane bound structure consisting of a granular matrix with again an internal tubular array. This species possesses a choroidally located tapetum lucidum in the superior fundus and over this tapetal area, melanosomes are absent from the RPE cells. In non-tapetal locations a few melanosomes are present that do not appear to undergo photomechanical movements. Bruch's membrane is a pentalaminate structure with an almost continuous central elastic layer (lamina densa). The choriocapillaris forms a single layer of capillaries with a thin but only minimally fenestrated endothelium facing Bruch's membrane.  相似文献   

4.
As part of a comparative morphological study, the fine structure of the retinal pigment epithelium (RPE), the choriocapillaris and Bruch's membrane (complexus basalis) has been investigated by light and electron microscopy in the mallard (Anas platyrhynchos). In this species the RPE consists of a single layer of cuboidal cells which display numerous very deep basal (scleral) infoldings and extensive apical (vitreal) processes which enclose photoreceptor outer segments. The RPE cells are joined laterally by prominent basally-located tight junctions. Internally smooth endoplasmic reticulum is the most abundant cell organelle with only small amounts of rough endoplasmic reticulum present. Polysomes are abundant as are basally-located mitochondria which often displayed a ring-shaped profile. The cell nucleus is large and vesicular. Melanosomes are plentiful only within the apical processes of the RPE cells in the light-adapted state. Myeloid bodies are large and numerous and very often have ribosomes on their outer surface. Bruch's membrane (complexus basalis) shows a pentalaminate structure but with only a poorly represented central elastic lamina. Profiles of the choriocapillaris are relatively small and the endothelium of these capillaries while extremely thin facing the retinal epithelium is but minimally fenestrated.  相似文献   

5.
The morphology of the retinal pigment epithelium (RPE) and closely associated Bruch's membrane (complexus basalis) and choriocapillaris have been investigated by electron microscopy in the vervet monkey (Cercopithecus aethiops). The RPE is composed of a single layer of cuboidal cells joined laterally by apically-located junctional complexes. Basally (sclerally) these cells display numerous infoldings while apically (vitreally) abundant processes enclose and interdigitate with rod outer segments. Internally the large vesicular nucleus is centrally located and smooth endoplasmic reticulum, mitochondria and lysosome-like bodies, are plentiful. Rough endoplasmic reticulum, polysomes and melanosomes while present are not abundant. Phagosomes of outer segment discs are noted in various stages of uptake and degradation. The choriocapillaris is highly fenestrated over large areas. Bruch's membrane shows the typical pentalaminate structure noted in other mammalian species without a tapetum lucidum.  相似文献   

6.
The morphology of the retinal pigment epithelium (RPE), Bruch's membrane (complexus basalis), choriocapillaris and tapetum lucidum has been studied in the eye of the ranch mink (Mustela vison) by light and electron microscopy. The RPE is composed of a single layer of cells joined laterally by apically located junctional complexes. Basally (sclerally) these cells display numerous infoldings whereas apically (vitreally) two types of processes are associated with rod and cone outer segments. Smooth endoplasmic reticulum and mitochondria are abundant in these cells whereas rough endoplasmic reticulum and polysomes, although present, are not plentiful. An occasional wandering phagocyte is noted at the RPE-photoreceptor interface. In the posterosuperior part of the fundus, a degenerative tapetum lucidum is present. The presence of only a few layers of tapetal cells containing but little reflective material and the haphazard arrangement of this material makes it very unlikely that this area functions as an effective tapetum lucidum. The RPE over the aberrant tapetum, however, shows the morphology that is seen when a functioning tapetum cellulosum is present, namely the absence of melanosomes and an indented choriocapillaris. Bruch's membrane in non-tapetal areas is pentalaminate but, over the tapetum and where it is associated with capillary profiles, it is reduced to a single, thickened basal lamina. The choriocapillary endothelium is highly fenestrated and in nontapetal areas these capillaries are not indented into the epithelial layer.  相似文献   

7.
The morphology of the retinal epithelium and the closely associated choriocapillaris and Bruch's membrane (complexus basalis) has been investigated in the eye of the grey seal (Halichoerus grypus) by electron microscopy. The retinal epithelium is composed of a single layer of cuboidal cells joined laterally by apically-located junctional complexes. Basally (sclerally) these cells display numerous infoldings while apically (vitreally) abundant processes enclose rod outer segments. Internally the large vesicular nucleus is centrally located. Smooth endoplasmic reticulum, mitochondria and lysosome-like bodies are abundant. Rough endoplasmic reticulum and polysomes while present are not plentiful. Phagosomes of outer-segment discs are only occasionally noted in the light-adapted state. As the entire fundus is overlain with a choroidally located tapetum cellulosum, only at the extreme periphery is an occasional melanosome present in these epithelial cells. The choriocapillaris endothelium is highly fenestrated and the profiles of these capillaries are deeply indented into the epithelial layer. Bruch's membrane (complexus basalis) is reduced to a trilaminate structure rather than the typical pentalaminate membrane seen in most mammalian species and when associated with capillary profiles is further reduced to a single thick basal lamina.  相似文献   

8.
J I Perlman  J Piltz  G Korte  C Tsai 《Acta anatomica》1989,135(4):354-360
Endocytosis in the retinal pigment epithelium (RPE) of rats was studied using horseradish peroxidase, microperoxidase and ferritin tracers. Tracer uptake was mediated by coated pits and coated vesicles. Coated pits formed at two discrete regions at the RPE plasma membrane: that portion of basal membrane directly opposing Bruch's membrane, and at the bases of the apical lamellae and villi. Two populations of coated vesicles were identified and distinguished by size, location and function. Large coated vesicles (91.8 +/- 14.7 nm in diameter) were located near the cell surface and incorporated tracer. Small coated vesicles (64.5 +/- 15.7 nm diameter) located more deeply within the cell were not tracer-labeled, and were often fused with the endoplasmic reticulum or the Golgi apparatus. Observations of the endocytic pathway in rat RPE cells are presented. Tracer was also found in organelles of the lysosomal system, e.g. the multivesicular body, but was not identified in the smooth endoplasmic reticulum or Golgi apparatus.  相似文献   

9.
High speed laser confocal microscopy (8 ms/image) was applied to the dissociated parotid acini as a model to study Ca2+ signaling mechanisms in non-excitable exocrine secretory cells. Immunofluorescence microscopy showed the localization of IP3 receptor type 2 along the apical membrane region. Muscarinic stimulation with carbachol evoked a rise in [Ca2+]i that was initiated from apical region and propagated into basal region as Ca2+ waves. This was most clearly observed when extracellular Ca2+ was omitted. Carbachol also triggered the abrupt increase of [Ca2+]i simultaneously at both basal and apical regions in many acini. Within an acinus, each cell responded synchronously. The present results suggest that one Ca2+ initiation site in the rat parotid acinar cell is apical region, corresponding to the localization of IP3 receptors. Another Ca2+ initiation site is basal region, which seems to be related to Ca2+ entry from extracellular medium and/or Ca2+ release from basally located organelles such as nuclei and endoplasmic reticulum.  相似文献   

10.
In early age-related macular degeneration (AMD), lipid-containing deposits (drusen) accumulate in Bruch's membrane underlying the retinal pigment epithelium (RPE). Recent studies indicate that apolipoprotein E (apoE) may play a role in lipid trafficking in AMD. Compared with the apoE3 allele, the apoE4 and apoE2 alleles are associated with decreased and increased risk for AMD, respectively; drusen contain high levels of apoE, and apoE null mice develop lipid deposits in Bruch's membrane similar to those observed in AMD. Primary cultures of human RPE cells expressing the apoE3 allele were grown on Transwell culture plates. Western blotting, ELISA assay, and mass spectrometry confirmed that apoE3 was secreted into the apical and basal chambers and that secretion was upregulated by thyroid hormone, 9-cis-retinoic acid, and 22(R)-hydroxycholesterol. In addition, basally secreted apoE associated with exogenously added HDL. These results indicate that apoE secretion can be regulated by specific hormones and that apoE associates with HDL. The findings are consistent with a role for apoE in lipid trafficking through Bruch's membrane and may be relevant to AMD.  相似文献   

11.
The fine structure of the retinal epithelium has been studied by electron microscopy in the opossum (Didelphis virginiana). The retinal epithelium, over most of the retina, is typical of that in other vertebrates and consists of a single layer of heavily pigmented, cuboidal cells. These cells display extensive basal (scleral) infoldings and numerous apical (vitreal) processes which enclose photoreceptor outer segments. A semicircular area of the retinal epithelium in the superior fundus is further specialized as a tapetum lucidum. The reflecting material consists of a large quantity of lipoidal spheres scattered throughout the epithelial cells. Centrally in the tapetal area very few or no melanosomes are found, indicating a non-occlusible tapetum. Peripherally in the tapetum, the epithelial cells contain both reflecting material and melanosomes. As in the non-tapetal area, the epithelial cells of the tapetum display large amounts of smooth endoplasmic reticulum and numerous mitochondria. Bruch's membrane everywhere displays the usual pentalaminate structure described for most vertebrates. The choriocapillaris is also typical, in that numerous fenestrations are present in the endothelium bordering Bruch's membrane.  相似文献   

12.
Trichomes on the orchid ovary are a possible site of synthesis and secretion of the floral scent. Scanning electron microscopy of these trichomes shows a bulbous cell on a two-celled stalk. Thin sections of the tip cell revealed the morphology of an active, secretory cell with unusual coated vesicles in the extra-cellular deposition. Abundant smooth endoplasmic reticulum (ER) aggregated beneath the plasma membrane in the apical region of the cell and the limited dictyosomes in the cell suggest direct secretion by ER. Numerous lipid droplets are present in the apical area. Plastids, found only in the basal region of this cell, are more round in profile than typical chloroplasts and contain only a few unstacked thylakoids and a limited membranous reticulum. In addition to the normal plastid envelope, a double layer of membrane (probably ER) is tightly appressed to each dense, starch-free plastid. Highly specialized morphology and subcellular localization of organelles suggest the secretory nature of these trichomes.  相似文献   

13.
14.
The ultrastructure of the Sertoli cell of the vervet monkey was studied using both scanning and transmission electron microscopic techniques. SEM micrographs revealed perforated sleeve-like processes which encased mature elongated spermatids which are ready for spermiation. TEM micrographs showed a large Sertoli cell nucleus characterized by many lobes (4–5) and consisting of a homogenous nucleoplasm and a distinctive nucleolus. The nucleus occupies a significant portion of the basal region of the cell. The distribution of chromatin clearly shows high activity of these cells. Lipid droplets and free ribosomes are also found scattered throughout the cytoplasm. Well-developed Golgi apparatus is found in the basal region of the cell. There is phagocytic activity in the Sertoli cells as revealed by the presence of numerous phagosomes. Numerous mitochondria with well-developed tubular cristae are found on the basal side of the nucleus, whereas few mitochondria are located on the apical side of the nucleus. Distinct desmosomes are located between cells. A well-developed smooth endoplasmic reticulum and granular endoplasmic reticulum are frequently found in the cytoplasm of the Sertoli cells. The results of this investigation showed that Sertoli cells of the vervet monkey are almost similar to those of humans and show many similarities with other mammalian species.  相似文献   

15.
Development of peltate glandular trichomes of peppermint   总被引:1,自引:0,他引:1  
Cryofixation and conventional chemical fixation methods were employed to examine the ultrastructure of developing peltate glandular trichomes of peppermint (Mentha x piperita). Our results are discussed in relation to monoterpene production and the mechanism of essential oil secretion. Peltate glands arise as epidermal protuberances (initials) that divide asymmetrically to produce a vacuolate basal cell, a stalk cell, and a cytoplasmically dense apical cell. Further divisions of the apical cell produce a peltate trichome with one basal cell, one stalk cell, and eight glandular (secretory) disc cells. Presecretory gland cells resemble meristematic cells because they contain proplastids, small vacuoles, and large nuclei. The secretory phase coincides with the separation and filling of the sub-cuticular oil storage space, the maturation of glandular disc cell leucoplasts in which monoterpene biosynthesis is known to be initiated, and the formation of extensive smooth endoplasmic reticulum at which hydroxylation steps of the monoterpene biosynthetic pathway occur. The smooth endoplasmic reticulum of the secretory cells appears to form associations with both the leucoplasts and the plasma membrane bordering the sub-cuticular oil storage cavity, often contains densely staining material, and may be involved with the transport of the monoterpene-rich secretion product. Associated changes in the ultrastructure of the secretory stage stalk cell are also described, as is the ultrastructure of the fragile post-secretory gland for which cryofixation methods are particularly well suited for the preservation of organizational integrity.  相似文献   

16.
Demonstration of microfibrils in Bruch's membrane of the eye   总被引:1,自引:0,他引:1  
E Essner  S R Gordon 《Tissue & cell》1984,16(5):779-788
The cationic dyes ruthenium red and alcian blue were used to visualize a population of microfibrils in Bruch's membrane, a compound basement membrane located in the uveal tract of the eye between the retinal pigment epithelium and choriocapillaris. Microfibrils were tubular structures, 10-12 nm in diameter, that showed a characteristic beaded pattern. The majority of microfibrils appeared as a dense mantle around the layer of amorphous elastin. Microfibrils and collagen fibers were also present as a loosely organized meshwork in the collagenous zone of the membrane. Microfibrils were also seen along the basal surface of the retinal pigment epithelium where they appeared to insert into the substance of the basal lamina. Ruthenium red staining of microfibrils was not abolished by prior exposure of tissue to several kinds of degradative enzymes. The findings suggest that the elastic properties of Bruch's membrane may depend on both the elastin and microfibrillar components.  相似文献   

17.
The uItrastructure oft he pigment epithelium and its vascular barrier was examined in the Japanese quail by electron microscopy. Most endothelial pores in the choriocapillaris appear bridged by double diaphragms. The pigment epithelium is characterized by numerous slender basal infoldings, myeloid bodies and phagosomes. Myeloid bodies communicate with the nuclear envelope and profiles of both the rough and smooth endoplasmic reticulum.Phagosome formation appears to be accomplished by concomitant activity of the rod itself (curling of apical lamellae) and the apical villi of the pigment epithelium. Within the pigment epithelium cytoplasm the phagosomes undergo degeneration and are associated with increased numbers of lysosomal-like granules.  相似文献   

18.
The ultrastructure of the colon of Locusta migratoria is described. The colon is lined by a thick cuticle that, for the most part, adheres to the underlying epithelium. The cuboid epithelial cells are characterized by moderate invaginations of the apical and, to a lesser extent, basal plasma membranes; the lateral plasma membranes are relatively flat. The bulk of the mitochondria are located in the apical region of the cell and are not particularly associated with any of the plasma membranes. The basal region of the cells contains much rough endoplasmic reticulum, glycogenlike granules, and a predominance of spherical, electron-dense bodies of various sizes. Where muscle fibers make contact with the epithelium, the cells are much reduced; the cytoplasm is usually less electron-dense, and, typically, the nucleus has a thick layer of granular material associated with the inner nuclear membrane. The apical and basal plasma membranes of the reduced epithelial cells contain numerous hemidesmosomes. The apical hemidesmosomes occur in pairs around an extracellular space that contains electron-opaque material. The latter forms tonofibrillae that extend into the endocuticle. Bundles of microtubules are associated with the hemidesmosomes. The tubules traverse the cell from the apical to the basal region. The possible significance of these findings is discussed.  相似文献   

19.
Mendoza  Andres S. 《Chemical senses》1986,11(4):541-555
The glands of adult mouse vomeronasal organ (VNO) were studiedwith light- and electro-microscopical techniques. The vomeronasalglands (VN-Gs) consist of several individual glandular complexesdistributed along the long axis of the VNO. The secretory productsreleased from VN-G cells enter into the lumen of the VNO inthe region of transition between the neuroepithelium and thereceptor-free epithelium. The acini show the typical morphologicalfeatures of serous glands. The secretory cells of these aciniare characterized by a round to oval nucleus and a well-developed,rough endoplasmic reticulum, both preferentially located inthe basal part of the cell. The supranuclear region is occupiedby the Golgi apparatus and secretory granules varying in sizeand electron density. They accumulate towards the apical partof the cell. Secretory cells are connected by tight junctions,desmosomes and membrane interdigitations, moreover, they arealso coupled by gap junctions. Axonal terminals containing clearvesicles and dense-cored vesicles are frequently seen betweenthe secretory cells. Secretory cells are directly related tothe thin basal lamina of the acinus; myoepithelial cells arenot present. In the lamina propria, numerous smooth muscle cells,blood vessels and nerve bundles containing both myelinated andunmyelinated axons can be observed. An automatic regulationof the activity of the VN-Gs is discussed in relation to thevomeronasal pump.  相似文献   

20.
Abstract In the females of Dendrolimus pini the pheromone-producing epithelium is present ventrally between the 8th and 9th abdominal segments. The epithelium is about 40 μm thick. The cells possess extensive microvillar borders, both apically towards the cuticle and laterally, towards the adjoining cells. In the spaces between the cells in the upper half of the epithelium there are loosely arranged cuticular lamellae adjacent to the microvillous borders. The epithelial cells have large, basally situated nuclei, whereas the apical parts have extensive arrangements of tightly packed and orderly arranged smooth endoplasmic reticulum. Clear vesicles and microbod–ies are present in the cytoplasm. The gland has a structural potential for high pheromone-producing capacity (the well-developed endoplasmic reticulum) as well as an effective emission apparatus (the microvillous borders/cuticular lamellae). These two elements could facilitate a pulsed pheromone emission that is effective in arousing the sensory system of males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号