首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A total of 40 symbiotic bacterial strains isolated from root nodules of common bean grown in a soil located in the north of Tunisia were characterized by PCR-RFLP of the 16S rRNA genes. Six different ribotypes were revealed. Nine representative isolates were submitted to phylogenetic analyses of rrs, recA, atpD, dnaK, nifH and nodA genes. The strains 23C40 and 23C95 representing the most abundant ribotype were closely related to Sinorhizobium americanum CFNEI 156(T). S. americanum was isolated from Acacia spp. in Mexico, but this is the first time that this species is reported among natural populations of rhizobia nodulating common bean. These isolates nodulated and fixed nitrogen with this crop and harbored the symbiotic genes of the symbiovar mediterranense. The strains 23C2 and 23C55 were close to Rhizobium gallicum R602sp(T) but formed a well separated clade and may probably constitute a new species. The sequence similarities with R. gallicum type strain were 98.7% (rrs), 96.6% (recA), 95.8% (atpD) and 93.4% (dnaK). The remaining isolates were, respectively, affiliated to R. gallicum, E. meliloti, Rhizobium giardinii and Rhizobium radiobacter. However, some of them failed to re-nodulate their original host but promoted root growth.  相似文献   

2.
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.  相似文献   

3.
A well-resolved rhizobial species phylogeny with 51 haplotypes was inferred from a combined atpD + recA data set using Bayesian inference with best-fit, gene-specific substitution models. Relatively dense taxon sampling for the genera Rhizobium and Mesorhizobium was achieved by generating atpD and recA sequences for six type and 24 reference strains not previously available in GenBank. This phylogeny was used to classify nine nodule isolates from Sesbania exasperata, S. punicea and S. sericea plants native to seasonally flooded areas of Venezuela, and compared with a PCR-RFLP analysis of rrs plus rrl genes and large maximum likelihood rrs and nifH phylogenies. We show that rrs phylogenies are particularly sensitive to strain choice due to the high levels of sequence mosaicism found at this locus. All analyses consistently identified the Sesbania isolates as Mesorhizobium plurifarium or Rhizobium huautlense. Host range experiments on ten legume species coupled with plasmid profiling uncovered potential novel biovarieties of both species. This study demonstrates the wide geographic and environmental distribution of M. plurifarium, that R. galegae and R. huautlense are sister lineages, and the synonymy of R. gallicum, R. mongolense and R. yanglingense. Complex and diverse phylogeographic, inheritance and host-association patterns were found for the symbiotic nifH locus. The results and the analytical approaches used herein are discussed in the context of rhizobial taxonomy and molecular systematics.  相似文献   

4.
Bacteria from nodules of the legume Acaciella angustissima native to the south of Mexico were characterized genetically and their nodulation and competitiveness were evaluated. Phylogenetic studies derived from rpoB gene sequences indicated that A. angustissima is nodulated by Sinorhizobium mexicanum, Rhizobium tropici, Mesorhizobium plurifarium and Agrobacterium tumefaciens and by bacteria related to Sinorhizobium americanum, Sinorhizobium terangae, Rhizobium etli and Rhizobium gallicum . A new lineage related to S. terangae is recognized based on the sequences of gyrA, nolR, recA, rpoB and rrs genes, DNA–DNA hybridization and phenotypic characteristics. The name for this new species is Sinorhizobium chiapanecum and its type strain is ITTG S70T. The symbiotic genes nodA and nifH were similar to those from S. mexicanum strains, which are Acaciella symbionts as well, with nodA gene sequences grouped within a cluster of nod genes from strains that nodulate plants from the Mimosoideae subfamily of the Leguminosae. Sinorhizobium isolates were the most frequently obtained from A. angustissima nodules and were among the best strains to promote plant growth in A. angustissima and to compete in interstrain nodule competition assays. Lateral transfer of symbiotic genes is not evident among the genera that nodulate A. angustissima ( Rhizobium, Sinorhizobium and Mesorhizobium ) but may occur among the sympatric and closely related sinorhizobia that nodulate Acaciella .  相似文献   

5.
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.  相似文献   

6.
Salinity is an increasing problem in Africa affecting rhizobia-legume symbioses. In Morocco, Phaseolus vulgaris is cultivated in saline soils and its symbiosis with rhizobia depends on the presence of osmotolerant strains in these soils. In this study, 32 osmotolerant rhizobial strains nodulating P. vulgaris were identified at the species and symbiovar levels by analysing core and symbiotic genes, respectively. The most abundant strains were closely related to Rhizobium etli and R. phaseoli and belonged to symbiovar phaseoli. A second group of strains was identified as R. gallicum sv gallicum. The remaining strains, identified as R. tropici, belonged to the CIAT 899(T) nodC group, which has not yet been described as a symbiovar. In representative strains, the otsA gene involved in the accumulation of trehalose and putatively in osmotolerance was analysed. The results showed that the phylogeny of this gene was not completely congruent with those of other core genes, since the genus Ensifer was more closely related to some Rhizobium species than others. Although the role of the otsA gene in osmotolerance is not well established, it can be a useful protein-coding gene for phylogenetic studies in the genus Rhizobium, since the phylogenies of otsA and other core genes are coincident at the species level.  相似文献   

7.
Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not only the pSym plasmid but also other plasmids containing symbiosis-related genes, with a similar organization. In contrast, strains belonging to other bean-nodulating species seem to have acquired only the pSym plasmid from R. etli.  相似文献   

8.
We examined the interrelationships of the genomes of 10 slow-growing strains of Rhizobium japonicum to provide a foundation for molecular genetic studies of these agriculturally important endosymbiotic bacteria of commercial soybeans. The degree of base substitution in and around known symbiotic genes (nif and presumptive nod), constitutively expressed genes (glnA and recA), and two other cloned sequences was estimated from restriction site variation by using cloned DNAs as hybridization probes to genomic Southern blots. Two highly divergent patterns of conservation of nifDH genes and nod-homologous sequences were found. On this basis, we classified the strains as the symbiotic genotypes sTI or sTII. Existing maps of the nif genes of R. japonicum apply only to strains of the sTI genotype. This division was further characterized by four other probes which also distinguished two sublines within sTI. Phenograms were constructed depicting interrelationships according to DNA sequence divergence. sTI and sTII are two highly divergent evolutionary lines consistent with the status of individual species. Neither is related to fast-growing Rhizobium strains (PRC strains) nodulating soybeans.  相似文献   

9.
The genetic structure of populations of the symbiotic nitrogen-fixing soil bacterium Rhizobium meliloti was examined by analysis of electrophoretically demonstrable allelic variation in 14 metabolic, presumably chromosomal, enzyme genes. A total of 232 strains were examined, most of which were isolated from southwest Asia, where there is an unsurpassed number of indigenous host species for R. meliloti. The collection consisted of 115 isolates recovered from annual species of Medicago in Syria, Turkey, and Jordan; 85 isolates cultured from two perennial species of Medicago (M. sativa [alfalfa] and M. falcata) in northern Pakistan and Nepal; and 32 isolates collected at various localities in North and South America, Europe, South Africa, New Zealand, and Australia, largely from M. sativa. Fifty distinctive multilocus genotypes (electrophoretic types [ETs]) were identified, and cluster analysis revealed two primary phylogenetic divisions separated at a genetic distance of 0.83. By the criterion of genetic differentiation conventionally applied in defining species limits among members of the family Enterobacteriaceae and certain other bacteria, the two primary divisions of R. meliloti represent distinct evolutionary species. Division A included 35 ETs represented by 209 strains from the eastern Mediterranean basin, northern Pakistan, Nepal, and various other localities worldwide. This division contained the nine commercial alfalfa inoculant strains examined. Division B included 15 ETs represented by 23 isolates, 21 of which were isolated from annual medic species growing in previously uninoculated soils in the eastern Mediterranean basin. The two remaining strains in division B, both representing the same ET, were isolated in the United States and Australia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The genetic structure of populations of the symbiotic nitrogen-fixing soil bacterium Rhizobium meliloti was examined by analysis of electrophoretically demonstrable allelic variation in 14 metabolic, presumably chromosomal, enzyme genes. A total of 232 strains were examined, most of which were isolated from southwest Asia, where there is an unsurpassed number of indigenous host species for R. meliloti. The collection consisted of 115 isolates recovered from annual species of Medicago in Syria, Turkey, and Jordan; 85 isolates cultured from two perennial species of Medicago (M. sativa [alfalfa] and M. falcata) in northern Pakistan and Nepal; and 32 isolates collected at various localities in North and South America, Europe, South Africa, New Zealand, and Australia, largely from M. sativa. Fifty distinctive multilocus genotypes (electrophoretic types [ETs]) were identified, and cluster analysis revealed two primary phylogenetic divisions separated at a genetic distance of 0.83. By the criterion of genetic differentiation conventionally applied in defining species limits among members of the family Enterobacteriaceae and certain other bacteria, the two primary divisions of R. meliloti represent distinct evolutionary species. Division A included 35 ETs represented by 209 strains from the eastern Mediterranean basin, northern Pakistan, Nepal, and various other localities worldwide. This division contained the nine commercial alfalfa inoculant strains examined. Division B included 15 ETs represented by 23 isolates, 21 of which were isolated from annual medic species growing in previously uninoculated soils in the eastern Mediterranean basin. The two remaining strains in division B, both representing the same ET, were isolated in the United States and Australia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In prokaryotes, lateral gene transfer across chromosomal lineages may be mediated by plasmids, phages, transposable elements, and other accessory DNA elements. However, the importance of such transfer and the evolutionary forces that may restrict gene exchange remain largely unexplored in native settings. In this study, tests of phylogenetic congruence are employed to explore the range of horizontal transfer of symbiotic (sym) loci among distinct chromosomal lineages of native rhizobia, the nitrogen-fixing symbiont of legumes. Rhizobial strains isolated from nodules of several host plant genera were sequenced at three loci: symbiotic nodulation genes (nodB and nodC), the chromosomal housekeeping locus glutamine synthetase II (GSII), and a portion of the 16S rRNA gene. Molecular phylogenetic analysis shows that each locus generally subdivides strains into the same major groups, which correspond to the genera Rhizobium, Sinorhizobium, and Mesorhizobium. This broad phylogenetic congruence indicates a lack of lateral transfer across major chromosomal subdivisions, and it contrasts with previous studies of agricultural populations showing broad transfer of sym loci across divergent chromosomal lineages. A general correspondence of the three rhizobial genera with major legume groups suggests that host plant associations may be important in the differentiation of rhizobial nod and chromosomal loci and may restrict lateral transfer among strains. The second major result is a significant incongruence of nod and GSII phylogenies within rhizobial subdivisions, which strongly suggests horizontal transfer of nod genes among congenerics. This combined evidence for lateral gene transfer within, but not between, genetic subdivisions supports the view that rhizobial genera are "reproductively isolated" and diverge independently. Differences across rhizobial genera in the specificity of host associations imply that the evolutionary dynamics of the symbiosis vary considerably across lineages in native settings.   相似文献   

12.
This study uses a combined methodological approach including phylogenetic, phylogeographic, and demographic analyses to understand the evolutionary history of the northern leopard frog, Rana pipiens. We tested hypotheses concerning how (or if) known geological events and key features of the species biology influenced the contemporary geographic and genetic distribution of R. pipiens. We assayed mitochondrial DNA variation from 389 individuals within 35 populations located throughout the species range. Our a priori expectations for patterns and processes influencing the current genetic structure of R. pipiens were supported by the data. However, our analyses revealed specific aspects of R. pipiens evolutionary history that were unexpected. The phylogenetic analysis indicated that R. pipiens is split into populations containing discrete eastern or western haplotypes, with the Mississippi River and Great Lakes region dividing the geographic ranges. Nested clade analysis indicated that the biological process most often invoked to explain the pattern of haplotype position is restricted gene flow with isolation by distance. Demographic analyses showed evidence of both historical bottlenecks and population expansions. Surprisingly, the genetic evidence indicated that the western haplotypes had significantly reduced levels of genetic diversity relative to the eastern haplotypes and that major range expansions occurred in both regions well before the most recent glacial retreat. This study provides a detailed history of how a widespread terrestrial vertebrate responded to episodic Pleistocene glacial events in North America. Moreover, this study illustrates how complementary methods of data analysis can be used to disentangle recent and ancient effects on the genetic structure of a species.  相似文献   

13.
A total of 159 endophytic bacteria were isolated from surface-sterilized root nodules of wild perennial Glycyrrhiza legumes growing on 40 sites in central and northwestern China. Amplified fragment length polymorphism (AFLP) genomic fingerprinting and sequencing of partial 16S rRNA genes revealed that the collection mainly consisted of Mesorhizobium, Rhizobium, Sinorhizobium, Agrobacterium and Paenibacillus species. Based on symbiotic properties with the legume hosts Glycyrrhiza uralensis and Glycyrrhiza glabra, we divided the nodulating species into true and sporadic symbionts. Five distinct Mesorhizobium groups represented true symbionts of the host plants, the majority of strains inducing N2-fixing nodules. Sporadic symbionts consisted of either species with infrequent occurrence (Rhizobium galegae, Rhizobium leguminosarum) or species with weak (Sinorhizobium meliloti, Rhizobium gallicum) or no N2 fixation ability (Rhizobium giardinii, Rhizobium cellulosilyticum, Phyllobacterium sp.). Multivariate analyses revealed that the host plant species and geographic location explained only a small part (14.4%) of the total variation in bacterial AFLP patterns, with the host plant explaining slightly more (9.9%) than geography (6.9%). However, strains isolated from G. glabra were clearly separated from those from G. uralensis, and strains obtained from central China were well separated from those originating from Xinjiang in the northwest, indicating both host preference and regional endemism.  相似文献   

14.
Twenty-six Rhizobium galegae strains, representing the center of origin of the host plants Galega orientalis and G. officinalis as well as other geographic regions, were used in a polyphasic analysis of the relationships of R. galegae strains. Phage typing, lipopolysaccharide (LPS) profiling, pulsed field gel electrophoresis (PFGE) profiling and rep-PCR (use of repetitive sequences as PCR primers for genomic fingerprinting) with REP and ERIC primers investigated nonsymbiotic properties, whereas plasmid profiling and hybridisation with a nif gene probe, and with nodB, nodD, nod box and an IS sequence from the symbiotic region as probes, were used to reveal the relationships of symbiotic genes. The results were used in pairwise calculations of distances between the strains, and the distances were visualised as a dendrogram. Indexes of association were compared for all tests pooled, and for chromosomal tests and symbiotic markers separately, to display the input of the different categories of tests on the grouping of the strains. Our study shows that symbiosis related genetic traits in R. galegae divide strains belonging to the species into two groups, which correspond to strains forming an effective symbioses with G. orientalis and G. officinalis respectively. We therefore propose that Rhizobium galegae strains forming an effective symbiosis with Galega orientalis are called R. galegae bv. orientalis and strains forming an effective symbiosis with Galega officinalis are called R. galegae bv. officinalis.  相似文献   

15.
The evolutionary history of closely related organisms can prove sometimes difficult to infer. Hybridization and incomplete lineage sorting are the main concerns; however, genome rearrangements can also influence the outcome of analyses based on nuclear sequences. In the present study, DNA sequences from 12 nuclear genes, for which the approximate chromosomal locations are known, have been used to estimate the evolutionary history of two forms of Drosophila americana ( Drosophila   americana americana and Drosophila americana texana ) and Drosophila novamexicana ( virilis group of species). The phylogenetic analysis of the combined data set resulted in a phylogeny showing reciprocal monophyly for D. novamexicana and D. americana . Single gene analyses, however, resulted in incongruent phylogenies influenced by chromosomal rearrangements. Genetic differentiation estimates indicated a significant differentiation between the two species for all genes. Within D. americana , however, there is no evidence for differentiation between the chromosomal forms except at genes located near the X/4 fusion and Xc inversion breakpoint. Thus, the specific status of D. americana and D. novamexicana is confirmed, but there is no overall evidence for genetic differentiation between D. a. americana and D. a. texana , not supporting a subspecific status. Based on levels of allele and nucleotide diversity found in the strains used, it is proposed that D. americana has had a stable, large population during the recent past while D. novamexicana has speciated from a peripheral southwestern population having had an ancestral small effective population size. The influence of chromosomal rearrangements in single gene analyses is also examined.  相似文献   

16.
Forty-eight lentil-nodulating rhizobia were isolated from soil samples collected from diverse agro-ecological locations in Ethiopia, and characterized based on 76 phenotypic traits. Furthermore, 26 representative strains were selected and characterized using multilocus sequence analyses (MLSA) of core (16S rRNA, recA, atpD, glnII and gyrB) and symbiotic (nodA and nifH) genes. Numerical analysis of phenotypic characteristics showed that the 48 test strains fell into three major distinct clusters. The phylogenetic trees based on 16S rRNA genes showed that they belong to the Rhizobium genus. Our phylogenetic reconstruction based on combined gene trees (recA, atpD and glnII) supported three distinct sub-lineages (Clades I–III). While genospecies I and II could be classified with Rhizobium etli and Rhizobium leguminosarum, respectively, genospecies III, might be an unnamed genospecies within the genus Rhizobium. Phylogenetic reconstruction based on the symbiosis-related genes supported a single cluster, indicating differences in the evolutionary histories between chromosomal and symbiotic genes. Overall, these results confirmed the presence of a great diversity of lentil-nodulating Rhizobium species in Ethiopia, inviting further exploration. Moreover, the differences in symbiotic effectiveness of the test strains indicated the potential for selecting and using them as inoculants to improve the productivity of lentil in the country.  相似文献   

17.
Family Rhizobiaceae includes fast growing bacteria currently arranged into three genera, Rhizobium, Ensifer and Shinella, that contain pathogenic, symbiotic and saprophytic species. The identification of these species is not possible on the basis of physiological or biochemical traits and should be based on sequencing of several genes. Therefore alternative methods are necessary for rapid and reliable identification of members from family Rhizobiaceae. In this work we evaluated the suitability of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for this purpose. Firstly, we evaluated the capability of this methodology to differentiate among species of family Rhizobiaceae including those closely related and then we extended the database of MALDI Biotyper 2.0 including the type strains of 56 species from genera Rhizobium, Ensifer and Shinella. Secondly, we evaluated the identification potential of this methodology by using several strains isolated from different sources previously identified on the basis of their rrs, recA and atpD gene sequences. The 100% of these strains were correctly identified showing that MALDI-TOF MS is an excellent tool for identification of fast growing rhizobia applicable to large populations of isolates in ecological and taxonomic studies.  相似文献   

18.
The existence of differential horizontal gene transfer may be assessed by comparing the phylogenetic trees derived from two different genes. We use this concept to estimate quantitatively the amount of plasmid exchange that has occurred in a bacterial population. By means of computer simulations we studied the effect of gene transfer on the topological distortion between two phylogenetic trees: one obtained from an euchromosomal gene and another from a plasmid-borne sequence, which may be subjected to horizontal transfer. The basic assumptions of our simulations were (a) that plasmid exchange had occurred recently (after the last population split); and (b) that either the amount of chromosomal horizontal exchange was negligible or that it was only a fraction of the amount of plasmid exchange in which case we will be estimating relative amounts of plasmid transfer. We found that the topological difference between two such trees is a function of the number of plasmid exchange events that have occurred. It can be explained by a logistic model that relates the average distortion index between two trees (dT) to the number of transfer events (x). The behavior remains the same under different conditions that were tested (symmetry of the topology, number of taxa in the tree, effect of reconstruction errors, mutation after plasmid transfer). We have also tried our method on empirical data from the literature and estimated the amount of gene transfer that may have occurred among Sym plasmids in agricultural field populations of Rhizobium leguminosarum biovar phaseoli. We found that between 15.77 to 29.98% of all genetic types in these populations have been either the source or the target of a plasmid transfer event. When the comparisons were made among trees derived exclusively from plasmid probes this value dropped to 2.00%. Phylogenetic trees derived from symbiotic and nonsymbiotic sequences were also used to infer the number of gene transfer events among 11 isolates from R. galegae. The estimated number of transfer events of symbiotic sequences was 10.515 (although we do not know out of how many genetic types). We concluded that intraspecific transfer of symbiotic sequences is widespread in these two species of the genus Rhizobium.  相似文献   

19.
Diverse rhizobia that nodulate two species of Kummerowia in China   总被引:2,自引:1,他引:2  
A total of 63 bacterial strains were isolated from root nodules of Kummerowia striata and K. stipulacea grown in different geographic regions of China. These bacteria could be divided into fast-growing (FG) rhizobia and slow-growing (SG) rhizobia according to their growth rate. Genetic diversity and taxonomic relationships among these rhizobia were revealed by PCR-based 16 S rDNA RFLP and sequencing, 16 S-IGS RFLP, SDS-PAGE of whole cell soluble proteins, BOX-PCR and symbiotic gene (nifH/nodC) analyses. The symbiotic FG strains were mainly isolated from temperate regions and they were identified as four genomic species in Rhizobium and Sinorhizobium meliloti based on the consensus of grouping results. The SG strains were classified as five genomic species within Bradyrhizobium and they were mainly isolated fron the subtropic and tropical regions. The phylogenetic analyses of nifH and nodC genes showed relationships similar to that of 16 S rDNA but the symbiotic genes of Bradyrhizobium strains isolated from Kummerowia were distinct from those isolated from Arachis and soybean. These results offered evidence for rhizobial biogeography and demonstrated that the Kummerowia-nodulating ability might have evolved independently in different regions in association with distinctive genomic species of rhizobia.  相似文献   

20.
We have used molecular genetics techniques to analyze the structural and functional organization of genetic information ofRhizobium phaseoli, the symbiont of the common bean plantPhaseolus vulgaris. As in otherRhizobium species, the genome consists of the chromosome and plasmids of high molecular weight. Symbiotic determinants, nitrogen fixation genes as well as nodulation genes, are localized on a single replicon, the symbiotic (sym) plasmid. Thesym plasmid of differentR. phaseoli strains was transferred to anAgrobacterium tumefaciens strain cured of its native plasmids. In all cases, Agrobacterium transconjugants able to nodulate bean plants were obtained. Some of the transconjugants had the capacity to elicit an effective symbiosis. The genome ofR. phaseoli is complex, containing a large amount of reiterated DNA sequences. In mostR. pahseoli strains one of such reiterated DNA families corresponds to the nitrogenase structural genes (nif genes). A functional analysis of these genes suggested that the presence of reiteratednif genesis is related to the capacity of fixing atmospheric nitrogen in the symbiotic state. The presence of several repeated sequences in the genome might provide sites for recombination, resulting in genomic rearrangements. By analyzing direct descendants of a single cell in the laboratory, evidence of frequent genomic rearrangements inR. phaseoli was found. We propose that genomic rearrangements constitute the molecular basis of the frequent variability and loss of symbiotic properties in different Rhizobium strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号