首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various chromosomal banding techniques were utilized on the catfish, Iheringichthys labrosus, taken from the Capivara Reservoir. C-banding regions were evidenced in telomeric regions of most of the chromosomes. The B microchromosome appeared totally heterochromatic. The restriction endonuclease AluI produced a banding pattern similar to C-banding in some chromosomes; the B microchromosome, when present, was not digested by this enzyme and remained stained. G-banding was conspicuous in almost all the chromosomes, with the centromeres showing negative G-banding. When the restriction endonuclease BamHI was used, most of the telomeres remained intact, while some centromeres were weakly digested. The B chromosome was also not digested by this enzyme. The first pair of chromosomes showed a pattern of longitudinal bands, both with G-banding and BamHI; this was more evident with G-banding. This banding pattern can be considered a chromosomal marker for this population of I. labrosus.  相似文献   

2.
G. C. Webb 《Chromosoma》1976,55(3):229-246
In Chortoicetes terminifera, G-banding, produced by the trypsin treatment of air-dried slides followed by Giemsa staining, leads to light staining gaps at the secondary constrictions on autosomal pair 6 and regions proximal to the centromere on the long arms of pair 4. The variable short arms of two of the three smallest pairs were usually flared and lightly stained after treatment. In contrast to the relatively minor response of the normal chromosome set to G-banding, the large supernumerary chromosomes of C. terminifera show a spectacular series of dark bands alternating with lightly stained gaps. Two G-band variants of the B-chromosome were found in a laboratory stock. These patterns of G-banding are discernable both at mitosis in adults and embryos of both sexes and at all stages of male meiosis. Some regions which are gaps after G-banding appear as dark bands after C-banding. Consequently the supernumerary chromosome is mainly darkly stained with C-banding. In addition the centromeres and some telomeres are C-banded along with narrow interstitial bands and polymorphic heterochromatic blocks. — C-banding was not always successful, the technique often yields a mixture of G- and C-banding. The disparity of banding between the normal complement and the B-chromosome implies that whatever the source of origin of the B it has undergone spectacular changes in organisation since its origin.  相似文献   

3.
The karyotype of Pan paniscus is reexamined by G-banding and examined for the first time by C-banding. In addition, examination of the chromosomes by the use of the fluorochromes adreamycine and 33258 Hoechst is undertaken. C-banding showed a surprising pattern with numerous terminal C-bands, as interstitial C-band, and several chromosomes lacking C-bands. Polymorphic conditions for C-bands are also identified involving several pairs. In a comparison to the chromosomes of man, G-banding revealed two pericentric inversions not previously observed. Only chromosome pairs No. 9,11,12 and the X are similar to man's by all techniques employed.  相似文献   

4.
D. G. Bedo 《Chromosoma》1982,87(1):21-32
Non banded sex chromosome elements have been identified in polytene trichogen cells of Lucilia cuprina using Y-autosome translocations, C-banding and Quinacrine fluorescence. The X chromosome is an irregular granular structure while the much smaller Y chromosome has both a dense darkly stained and a loosely organised segment. The X and Y chromosomes are underreplicated in polytene cells but comparison of C- and Q-banding characteristics of sex chromosomes in diploid and polytene tissues indicates that selective replication of non C-banding material occurs in both the sex chromosomes. Brightly fluorescing material in the Y chromosome is replicated to such an extent that it consists of half the polytene element, while the C-banding material, which makes up most of the diploid X chromosome, is virtually unreplicated. Differential replication also occurs in autosomes. In XXY males, and in males carrying a duplication of the X euchromatic region, a short uniquely banded polytene chromosome is formed. It is suggested that in males carrying two doses of X euchromatin a dosage compensation mechanism operates in which genes in one copy are silenced by forming a banded polytene chromosome.  相似文献   

5.
A sequential banding technique is described for the identification of chromosomes of interspecific hybrid cells with a mouse parent. Metaphases were first G-banded using trypsin-Giemsa to identify individual chromosomes and then the centromeres of the same cells were differentially stained by a C-banding technique specific for mouse chromosomes. This mouse specific C-banding employs treatment with hot formamide-SSC before staining, and the effect of this treatment on the staining of chromosomes from a number of species was investigated. The specific staining of mouse centromeres confirms the parental origin of chromosomes identified by G-banding and allows the rapid recognition of mouse and non-mouse chromosomes in metaphases from many different hybrid combinations.  相似文献   

6.
Peripheral blood lymphocyte metaphase chromosomes of three Bovoidean species have been studied using Quinacrine fluorescence and Giemsa banding techniques to give Q-, G-, and C-banding patterns. Q- and G-banding characteristics, coupled with chromosome length, enabled all of the chromosomes in each of the chromosome complements to be clearly distinguished, although some difficulties were encountered with the very smallest chromosomes. A comparison of G-banding patterns between the species revealed a remarkable degree of homology of banding patterns. Each of the 23 different acrocentric autosomes of the domestic sheep (2n=54) was represented by an identical chromosome in the goat (2n=60) and the arms of the 3 pairs of sheep metacentric autosomes were identical matches with the remaining 6 goat acrocentrics. A similar interspecies homology was evident for all but two of the autosomes in the ox (2n=60). This homology between sheep metacentric and goat acrocentric elements confirms a previously suggested Robertsonian variation. The close homology in G-banding patterns between these related species indicates that the banding patterns are evolutionarily conservative and may be a useful guide in assessing interspecific relationships. —The centromeric heterochromatin in the autosomes of the three species was found to show little or no Q-or G-staining, in contrast to the sex chromosomes. This lack of centromeric staining with the G-technique (ASG) contrasts markedly with results obtained with other mammalian species. However, with the C-banding technique these regions show a normal intense Giemsa stain and the C-bands in the sex chromosomes are inconspicuous. The amount of centromeric heterochromatin in the sheep metacentric chromosomes is considerable less than in the acrocentric autosomes or in a newly derived metacentric element discovered in a goat. It is suggested that the pale G-staining of the centromeric heterochromatin in these species might be related to the presence of G-Crich satellite DNA.  相似文献   

7.
A satellite DNA sequence of Parodon hilarii (named pPh2004) was isolated, cloned and sequenced. This satellite DNA is composed of 200 bp, 60% AT rich. In situ hybridization (FISH) results revealed that the satellite DNA pPh2004 is located in the terminal regions of several chromosomes, forming highly evident blocks in some and punctual marks in others. The comparison between the FISH and C-banding results showed that the location of this satellite DNA coincides with that of most terminal heterochromatins. However, some regions are only marked by FISH whereas other regions are only marked by C-banding. The possible existence of more than one satellite DNA family could explain these partial differences. The in situ hybridization with the satellite DNA and the G- and C-bandings confirmed the presence of a sex chromosome system of the ZZ/ZW type in P. hilarii, as well as the correct identification of the Z chromosome in the karyotype. This chromosome displays a segment of terminal heterochromatin in the long arm, similar to the segment observed in the short arm of the W chromosome, also showing a G-banding pattern similar to that of the short arm and part of the long arm of the W chromosome. A hypothesis on the origin of the W chromosome from an ancestral chromosome similar to the Z chromosome is presented.  相似文献   

8.
Somatic chromosomes of Trichobilharzia szidati Neuhaus, 1952 are described from larval stages dissected from snoils, air-dried on slides and stained with Giemsa and C-banding technique, used for the first time in Trichobilharzia sp. The karyotype consisted of 7 autosomal pairs and 1 pair of sex chromosomes, ZZ in the male and ZW in the female, where Z and W chromosomes are of different sizes and both are classified as submetaceatric. C-banding aided in identification of chromosomes Nos 4, satellited 6 and 8. No heterochromatin was observed in the W chromosome. The results were not in agreement with those previously reported and represent new findings. The possible explanation for this fact is given.  相似文献   

9.
东北虎和华南虎染色体比较研究   总被引:4,自引:0,他引:4  
张锡然  黄恭情 《动物学报》1993,39(3):334-337
采用外周血淋巴细胞培养技术,首次研究了东北虎核型、G-带,C-带和Ag-NOR以及华南虎的G-带,C-带,并就其结果进行了比较分析。结果表明:两种虎在染色体数目、G-带、C-带带型和Ag-NORs特征上,均没有明显差异。  相似文献   

10.
Human chromosomes fixed in methanol-acetic acid have been examined by X-ray microanalysis, before, during and after a G-banding and a C-banding procedure. Phosphorus (representing mainly DNA), sulphur and calcium are the most prominent elements in untreated chromosomes. In the G-banding procedure, the calcium is lost during 2 x SSC treatment. In the C-banding procedure, calcium is lost in the preliminary HCl treatment. During the following barium hydroxide treatment a large amount of barium becomes attached to the chromosomes, but is lost again during the subsequent 2 x SSC treatment. In both banding techniques Giemsa staining produces large peaks for sulphur (thiazine dyes) and bromine (eosin), showing that both types of dyes are involved in the staining. Reduction in the phosphorus peak during these procedures may be partly due to extraction of DNA and other chromosomal components, but could also be due to absorption of phosphorus X-rays by heavy elements (barium and bromine).  相似文献   

11.
大熊猫(Ailuropoda melanolenca)显带染色体的研究   总被引:5,自引:0,他引:5  
大熊猫系我国特产的世界珍稀动物,素有“活化石”和“国宝”之称。限于材料来源,虽有核型的少数报道(邓承宗等,1980;陈文元等,1984;Newnham et al.,1966),但研究尚不够深入。1980年,Wurster-Hill和Bush首先报道了大熊猫()的显带核型,并与杂交熊等比较,探讨了大熊猫的分类地位。本文对四只大熊猫的G带、C带核型和Ag-NORs作了分析,绘制了G带核型模式图,并提出了某些商榷的意见。  相似文献   

12.
In this paper, we present an analysis of the sex chromosomes of four hamster species after application of different staining techniques. The mitotic X chromosomes show a striking similarity in G-banding pattern but rather great differences in their C-banding patterns. A presumably homologous euchromatic segment that exhibits two distinct G-bands appears in the X chromosome of each species. The Y chromosome of Cricetus cricetus is in contrast to those of the other species, because it reveals a relatively well-differentiated G- and C-banding pattern. In meiotic metaphase I, interstitial chiasmata can be found in the sex bivalents of Cricetus cricetus and Cricetulus griseus, whereas the gonosomes of Mesocricetus auratus and Phodopus sungorus sungorus are terminally associated. The regions that are involved in pairing or association are always heterochromatic.  相似文献   

13.
The trypsin banding methods were applied to feather pulp and embryonic material of the chicken. Two contrasting types of chromosomal banding patterns were obtained by varying the duration of trypsin treatment. A short time treatment shows a G-banding pattern which has characteristic and distinctive bands along the chromosome arms. Prolonging the trypsin treatment causes the G-banding pattern to disappear, and only the centromeres and the W chromosome remained heterochromatic which is characteristic of the C-banding pattern. The application of the G-banding pattern analysis was used to identify regions of chromosomes involved in rearrangements. The simplified trypsin technique which produces the C-banding pattern makes it relatively easy to identify the W sex-chromosome and determine sex in avian species.  相似文献   

14.
A method is proposed to evaluate the amount of DNA resistant to the C-banding pretreatments (C-heterochromatic-DNA) in metaphase chromosomes. Measurements were performed by microfluorometry on propidium iodide stained metaphases of man, gorilla and mouse; in these species, C-heterochromatin exhibits significant differences of both base composition and distribution along the chromosomes. The amount of C-heterochromatic-DNA was found to be about 16%, 28% and 58% of the total DNA content (genome size) in man, gorilla and mouse, respectively. The areas of C-bands after Giemsa staining were also assessed by microdensitometry, and corresponded to about 8%, 15% and 14% of the total karyotype area of man, gorilla and mouse respectively. No direct relation thus exists between C-band areas and the amount of DNA resistant to the C-banding pretreatments. In man and gorilla, the amount of C-heterochromatic-DNA accounts for the differences observed in genome size.  相似文献   

15.
恙螨染色体分带的初步研究   总被引:5,自引:1,他引:4  
叶韵斌  王敦清 《昆虫学报》1992,35(2):165-170
本文报道应用胰酶法对微红纤恙螨Leptotrombidium rubellum,苍白纤恙螨L. pallidum和小板纤恙满L. scutellarc进行G带带型分析.三种恙螨染色体分别显示17、21、19条深带带纹,用CS-190机对每条显带的染色体进行薄层扫描,结果每一条深带显示一个峰,对微红纤螨和巨螯齿恙螨Odontaearus majestivus进行BSG法的C显带实验,均未见到带纹,从C带结果及对敬红纤慧螨染色体扫描电镜的初步观察结果,提示恙螨染色体可能为泛着丝粒类型,本文根据恙螨染色体的分带情况,探讨了几种恙螨间的亲缘关系以及恙螨染色体的研究在分类上的意义.  相似文献   

16.
Mitotic metaphase chromosomes of Silene latifolia (white campion) and Silene dioica (red campion) were studied and no substantial differences between the conventional karyotypes of these two species were detected. The classification of chromosomes into three distinct groups proposed for S. latifolia by Ciupercescu and colleagues was considered and discussed. Additionally, a new small satellite on the shorter arm of homobrachial chromosome 5 was found. Giemsa C-banded chromosomes of the two analysed species show many fixed and polymorphic heterochromatic bands, mainly distally and centromerically located. Our C-banding studies provided an opportunity to better characterize the sex chromosomes and some autosome types, and to detect differences between the two Silene karyotypes. It was shown that S. latifolia possesses a larger amount of polymorphic heterochromatin, especially of the centromeric type. The two Silene sex chromosomes are easily distinguishable not only by length or DNA amount differences but also by their Giemsa C-banding patterns. All Y chromosomes invariably show only one distally located band, and no other fixed or polymorphic bands on this chromosome were observed in either species. The X chromosomes possess two terminally located fixed bands, and some S. latifolia X chromosomes also have an extra-centric segment of variable length. The heterochromatin amount and distribution revealed by our Giemsa C-banding studies provide a clue to the problem of sex chromosome and karyotype evolution in these two closely related dioecious Silene species.  相似文献   

17.
Slides pretreated for C-banding and stained with DAPI or CMA3 show different banding patterns in human metaphase chromosomes compared to those obtained with either standard Giemsa C-banding or fluorochrome staining alone. Human chromosomes show C-plus DA-DAPI banding after C-banding plus DAPI and enhanced R-banding after C-banding plus Chromomycin A3 staining. If C-banding preferentially removes certain classes of DNA and proteins from different chromosome domains, C-banding pre-treatment may cause a differential DNA extraction from G- and R-bands in human chromosomes, resulting in a preferential extraction of DNA included in G-bands. This hypothesis is partially supported by the selective cleavage and removal of DNA from R-bands of restriction endonuclease HaeIII with C-banding combined with DAPI or Chromomycin A3 staining. Structural factors relating to regional differences in DNA and/or proteins could also explain these results.  相似文献   

18.
Endonuclease banding of isolated mammalian metaphase chromosomes   总被引:1,自引:0,他引:1  
Evidence is presented that endonuclease digestion of isolated, unfixed chromosomes results in the production of banding patterns similar to those produced by digestion of fixed, air-dried chromosomes. Mouse L cell chromosomes were isolated under acidic or relatively neutral pH conditions, exposed in situ (as wet mounts on glass slides) or in vitro (in suspension) to micrococcal nuclease, Alu I or Eco RI, treated with a buffered salt solution, and stained with Giemsa. After any of these endonuclease treatments in situ, the centromeric regions of the chromosomes were intensely stained, characteristic of the C-banding observed in fixed chromosomes exposed to the same treatments. Although the fixed chromosomes were morphologically well-preserved after endonuclease digestion, the morphology of chromosomes digested in situ was variable, ranging from normal to swollen to highly distorted chromosomes. In the latter, the endonucleases induced dispersion of non-C-band chromatin; however, C-bands were still apparent as condensed, differentially-stained regions. Exposure of isolated chromosomes to Alu I in vitro also resulted in well-defined C-banding and led to the extraction of about 70% of the chromosomal DNA. From these results, the mechanism of endonuclease-induced C-banding appears to involve the dispersion and extraction of digested chromatin.  相似文献   

19.
小熊猫染色体异染色质的显示   总被引:4,自引:0,他引:4  
以培养的小熊猫外周淋巴细胞为实验材料,结合C-显带技术及CMA3/DA/DAPI三竽荧光杂色的方法,对小熊猫的染色体组型、C-带带型及CMA3/DA/DAPI荧光带带型进行了研究,发现:(1)经C-显带技术处理,可在小熊猫染色体上呈现出一种极为独特的C-带带型。在多数染色体上可见到丰富的插入C-带及端粒C-带。而着丝区仅显示弱阳性C-带;(2)除着丝粒区外,CMA3诱导的大多数强荧光带纹与C-阳性  相似文献   

20.
Summary Giemsa techniques have refused to reveal G-banding patterns in plant chromosomes. Whatever has been differentially stained so far in plant chromosomes by various techniques represents constitutive heterochromatin (redefined in this paper). Patterns of this type must not be confused with the G-banding patterns of higher vertebrates which reveal an additional chromosome segmentation beyond that due to constitutive heterochromatin. The absence of G-bands in plants is explained as follows: 1) Plant chromosomes in metaphase contain much more DNA than G-banding vertebrate chromosomes of comparable length. At such a high degree of contraction vertebrate chromosomes too would not show G-bands, simply for optical reasons. 2) The striking correspondence of pachytene chromomeres and mitotic G-bands in higher vertebrates suggests that pachytene chromomeres are G-band equivalents, and that this may also be the case in plants. G-banded vertebrate chromosomes are on the average only 2.3 times shorter in mitosis than in pachytene; the chromomeric pattern therefore still can be shown. In contrast, plant chromosomes are approximately 10 times shorter at mitotic metaphase; their pachytene-like arrangement of chromomeres is therefore no longer demonstrable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号