首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study confirmed our previous assumption on the crucial role of central alpha2B-like adrenoceptor subtype in gastric mucosal defense. It was found that beside clonidine, rilmenidine, an alpha2/imidazoline receptor agonist and ST-91, an alpha2B-adrenoceptor preferring agonist inhibited the mucosal lesions induced by ethanol given intracerebroventricularly (i.c.v.). The ED50 values for clonidine, rilmenidine and ST-91 are 0.2, 0.01 and 16 nmol/rat i.c.v., respectively. The effect was reversed by the intracerebroventricularly injected alpha2B/2C-adrenoceptor antagonists prazosin and ARC-239, indicating the potential involvement of central alpha2B/2C-adrenoceptor subtype in the protective action. The gastroprotective effect of adrenoceptor stimulants was reversed by bilateral cervical vagotomy, suggesting that vagal nerve is likely to convey the central action to the periphery. In gastric mucosa both nitric oxide and prostaglandins may mediate the centrally-induced effect, since both indomethacin and N(G)-nitro-L-arginine reversed the protective effect of alpha2-adrenergic stimulants. Though expression of mRNA of alpha2B-, as well as alpha2A- and alpha2C-adrenoceptor subtypes was demonstrated in gastric mucosa of the rat, the hydrophilic ST-91, given peripherally (orally, subcutaneously), failed to exert mucosal protection, in contrast with clonidine and rilmenidine which were also effective. Consequently, while peripheral alpha2B-adrenoceptors are not likely to be involved in gastric mucosal protection, activation of central alpha2B-like adrenoceptor subtype may initiate a chain of events, which result in a vagal dependent gastroprotective action.  相似文献   

2.
Arginine vasopressin (AVP) increases water permeability in the collecting duct of the nephron via activation of adenylyl cyclase. Alpha-2 (alpha2) agonists inhibit AVP-stimulated water permeability via binding to alpha2 adrenoceptors that have been divided into 3 subtypes- alpha2A, alpha2B, and alpha2C. Some biological effects mediated by alpha2 agonists result from nonadrenergic imidazoline receptors that exist in the rat kidney. Thus, alpha2-inhibition of AVP-stimulated water permeability in the rat collecting duct could be caused by imidazoline receptors. The purpose of this study was to test agonists and antagonists selective for alpha2 and imidazoline receptors on AVP-stimulated water permeability in the rat inner medullary collecting duct (IMCD). Some experiments were conducted where water permeability was stimulated by a nonhydrolyzable analog of adenosine 3', 5'-cyclic monophosphate (cAMP). Agonists included dexmedetomidine, clonidine, oxymetazoline, agmatine and rilmenidine. The latter two are selective imidazoline agonists. Antagonists included yohimbine, RX821002, atipamezole, prazosin, WB4101, idazoxan, and BU239. Prazosin and WB4101 demonstrate selectivity for the alpha2B and alpha2C subtypes, respectively, and oxymetazoline and RX821002 are selective for the alpha2A subtype. BU239 is selective for imidazoline receptors. Wistar rat terminal IMCDs were isolated and perfused to determine the osmotic water permeability coefficient (Pf). All agonists except agmatine inhibited AVP-stimulated Pf. Inhibition by rilmenidine indicated a different mechanism of action from other agonists. Dose-response data show dexmedetomidine to be the most potent inhibitor. Oxymetazoline and clonidine inhibited cAMP-stimulated Pf indicating that the mechanism involves postcAMP cellular events. It was reported previously that dexmedetomidine inhibits cAMP-stimulated Pf (1). All antagonists except prazosin and WB4101 reversed alpha2-inhibition of AVP-stimulated Pf. BU239 was effective at 1 microM but not at 100 nM. Results suggest that alpha2A adrenoceptors modulate water permeability in the IMCD. The involvement of imidazoline receptors is inconclusive.  相似文献   

3.
Postsynaptic alpha-adrenoceptors in the rat tail artery have been examined by determining the pA2 values for antagonists against several alpha-adrenoceptor agonists. In this tissue the alpha-adrenoceptor agonists all produce concentration-dependent mechanical responses with the following rank order of potency: clonidine greater than norepinephrine greater than phenylephrine greater than UK 14304 greater than B-HT 920. Antagonism by prazosin and yohimbine of phenylephrine, norepinephrine, and clonidine responses does not reveal the anticipated discrimination between alpha 1- and alpha 2-adrenoceptors. Thus, pA2 values for prazosin (9.1-9.5), yohimbine (7.2-7.4), and corynanthine (7.0-7.1) and idazoxan (7.6) do not show large differences between these receptor agonists and suggests the predominance of alpha 1-adrenoceptor mediated contractile responses in this preparation. Significant differences between antagonist activities (pA2 values) in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) artery preparations have not been observed. The sensitivity sequence of alpha-adrenoceptor agonist-induced responses to nifedipine and D 600 is B-HT 920 greater than clonidine greater than phenylephrine greater than norepinephrine. Dependence of agonist response upon extracellular Ca2+ parallels the sensitivity to Ca2+ channel antagonists. Sensitivity to D 600 of phenylephrine responses increased with decreasing concentration of phenylephrine or with receptor blockade by phenoxybenzamine: sensitivity of responses to B-HT 920 was not affected by these procedures. Tail artery strips from WKY and SHR do not exhibit major differences in sensitivity to D 600 or to Ca2+ depletion. Bay k 8644, a Ca2+ channel activator, produces concentration-dependent mechanical responses in the tail artery in the presence of modestly elevated K+ concentrations (10-15 mM): these actions of elevated K+ can be mimicked by both alpha 1- and alpha 2-adrenoceptor agonists including methoxamine, St 587, UK 14304, and clonidine. These studies do not provide clear evidence for the existence of discrete postsynaptic alpha 1- and alpha 2-adrenoceptor populations in rat tail artery as indicated by pA2 values or Ca2+ dependence of response.  相似文献   

4.
Moxonidine and clonidine, which are imidazoline compounds, are sympathetic modulators used as centrally acting antihypertensive drugs. Moxonidine, clonidine, and agmatine produce extensive effects in mammalian tissues via imidazoline recognition sites (or receptors) or α(2)-adrenoceptors. To investigate the effects of imidazolines on the function of the urinary bladder, we tested the effects of moxonidine, clonidine, and agmatine on the neurogenic contraction induced by electric field stimulation, and on the post-synaptic receptors in isolated urinary bladder detrusor strips from rabbit. Both moxonidine at 1.0-10.0?μmol/L and clonidine at 0.1-10.0?μmol/L inhibited electric-field-stimulation-induced contraction in a concentration-dependent manner, but not agmatine (10.0-1000.0?μmol/L). Both moxonidine and clonidine failed to affect carbachol or adenosine-triphosphate-induced contractions; however, 1000.0?μmol/L agmatine significantly increased these contractions. Our study indicates that (i) moxonidine and clonidine produce a concentration-dependent inhibition of the neurogenic contractile responses to electric field stimulation in isolated detrusor strips from male New Zealand rabbits; (ii) post-synaptic muscarinic receptor and purinergic receptor stimulation are not involved in the responses of moxinidine and clonidine in this study; (iii) the inhibitory effects of these agents are probably not mediated by presynaptic imidazoline receptors.  相似文献   

5.
The mRNA levels for the three alpha1-adrenoceptor subtypes, alpha1A, alpha1B, and alpha1D, were quantified by real-time RT-PCR in arteries from Wistar rats. The alpha1D-adrenoceptor was prominent in both aorta (79.0%) and mesenteric artery (68.7%), alpha1A predominated in tail (61.7%) and small mesenteric artery (73.3%), and both alpha1A- and alpha1D-subtypes were expressed at similar levels in iliac artery. The mRNA levels of the alpha1B-subtype were a minority in all vessels (1.7-11.1%). Concentration-response curves of contraction in response to phenylephrine or relaxation in response to alpha1-adrenoceptor antagonists on maximal sustained contraction induced by phenylephrine were constructed from control vessels and vessels pretreated with 100 micromol/l chloroethylclonidine (CEC) for 30 min. The significant decrease in the phenylephrine potency observed after CEC treatment together with the inhibitory potency displayed by 8-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-8-azaspiro (4,5) decane-7-dionedihydrochloride} (BMY-7378, an alpha1D-adrenoceptor antagonist) confirm the relevant role of alpha1D-adrenoceptors in aorta and iliac and proximal mesenteric arteries. The potency of 5-methylurapidil (an alpha1A-adrenoceptor antagonist) and the changes in the potency of both BMY-7378 and 5-methylurapidil after CEC treatment provided evidence of a mixed population of alpha1A- and alpha1D-adrenoceptors in iliac and distal mesenteric arteries. The low potency of prazosin (pIC50 < 9) as well as the high 5-methylurapidil potency in tail and small mesenteric arteries suggest the main role of alpha1A/alpha1L-adrenoceptors with minor participation of the alpha1D-subtype. The mRNA levels and CEC treatment corroborated this pattern and confirmed that the alpha1L-adrenoceptor could be a functional isoform of the alpha1A-subtype.  相似文献   

6.
7.
Norepinephrine (NE) and the selective alpha1-adrenoceptor agonist phenylephrine (PE) both markedly stimulate the formation of [3H]inositol phosphates in a concentration-dependent manner upon incubation with [3H]myo-inositol. The selective alpha2 agonist, clonidine, did not significantly alter [3H]inositol phosphate formation, even at concentrations as high as 10(-3) M. The alpha1 antagonist prazosin (IC50, 0.036 microM) was 300 times more potent than the alpha2 antagonist yohimbine (IC50, 10.7 microM) as an inhibitor of NE (10(-4) M)-stimulated phosphatidylinositol (PI) hydrolysis. These results indicate that the alpha1-, but not the alpha2-adrenoceptor subtype in rat brain is coupled to phosphoinositide hydrolysis.  相似文献   

8.
1. Melanin-aggregation response of the medaka melanophores to a series of adrenergic drugs were examined. 2. Concentration-response curves for the drugs indicated that the melanin-aggregating effects of alpha 2 adrenergic agonists, naphazoline, tramazoline and clonidine, were more than 100-fold greater than that of alpha 1 agonists, phenylpropanolamine, phenylephrine, oxymetazoline and methoxamine. 3. The inhibitory effect of alpha 2 antagonist, yohimbine, on the cell responses to the agonists were also about 100-fold greater than that of alpha 1 antagonists, corynanthine and prazosin. 4. These results indicate that adrenergic receptors which mediate melanin-aggregation response of the cells are alpha 2 in nature.  相似文献   

9.
Adrenergic receptor agonists and antagonists were employed to establish (a) which receptor subtypes mediate the cyclic AMP response to norepinephrine in hypothalamic and preoptic area slices from gonadectomized female rats and (b) which receptor subtypes might be modulated by the steroid hormone estradiol. Slice cyclic AMP levels were elevated by the beta receptor agonist isoproterenol, but not by alpha 1 (phenylephrine, methoxamine) or alpha 2 (clonidine) agonists. However, the alpha agonist phenylephrine potentiated the effect of the beta agonist isoproterenol on slice cyclic AMP accumulation. In slices from rats given no hormone treatment, the beta antagonist propranolol inhibited norepinephrine-stimulated cyclic AMP production, while the alpha 1 antagonist prazosin was without effect. In contrast, the cyclic AMP response to norepinephrine in slices from estradiol-treated rats was blocked more effectively by prazosin than by propranolol. Estradiol treatment also attenuated the production of cyclic AMP by the beta agonist isoproterenol. The data suggest (a) that norepinephrine induction of cyclic AMP accumulation in hypothalamic and preoptic area slices is mediated by beta receptors and potentiated by alpha receptor activation and (b) that estradiol depresses beta and increases alpha 1 receptor function in slices from brain regions associated with reproductive physiology.  相似文献   

10.
《Journal of Physiology》1998,92(1):25-30
In the present experiments we investigated a possible involvement of imidazoline receptors of the paraventricular nucleus (PVN) of the hypothalamus on the pressor effects of the angiotensin II (ANG II) injected into the subfornical organ (SFO), in male Holtzman rats (250–300 g) with a cannula implanted into the third ventricle (3rdV), PVN and SFO. At first we tested the participation of α2 and imidazoline agonist and antagonist compounds on the pressor effect of ANG II injected into the 3rdV. Based on the results we may conclude that clonidine associated with rilmenidine was able to block the hypertensive response to ANG II. The ANG II (20 pmol) injected into SFO induced a robust increase in blood pressure (37 ± 2 mmHg). Isotonic saline (0.15 M) NaCl did not produce any change in blood pressure (5 ± 2 mmHg). The injection of rilmenidine (30 μg/kg/1 μL), an imidazoline agonist agent injected into PVN before ANG II injection into SFO, blocked the pressor effect of ANG II (5 ± 2 mmHg). Also, the injection of idazoxan (60 μg/kg/μL) before rilmenidine blocked the inhibitory effect of rilmenidine on blood pressure (39 ± 4 mmHg). The injection of clonidine (20 nmol/μL) prior to ANG II into the 3rdV produced a decreased in arterial blood pressure (37 ± 2 mmHg) to (15 ± 4 mmHg). The injection of yohimbine (80 nmol/μL) prior to clonidine blocked the effect of clonidine on the effect of ANG II (27 ± 2 mmHg). The injection of rilmenidine prior to ANG II also induced a decrease in arterial blood pressure (10 ± 3 mmHg). The injection of idazoxan prior to rilmenidine also blocked the inhibitory effect of rilmenidine (24 ± 3 mmHg). In summary, the present study demonstrated that rilmenidine decreases the hypertensive effect of ANG II, with more potency than clonidine, even when injected into 3rdV or PVN. This study established that the PVN interacts with SFO by imidazoline receptors in order to control the arterial blood pressure.  相似文献   

11.
Interaction of cirazoline, an imidazoline derivative, with alpha 1-adrenoceptor coupled inositol phospholipid hydrolysis was characterized in rat brain cortical slices. Norepinephrine, a full alpha 1-agonist, and phenylephrine, a partial alpha 1-agonist, on inositol phospholipid hydrolysis were included for comparison. Norepinephrine produced a fourfold stimulation of inositol phospholipid hydrolysis, whereas cirazoline and phenylephrine caused only submaximal responses (40-60%) when compared with norepinephrine. The stimulation of inositol phospholipid hydrolysis by cirazoline was completely blocked by the alpha 1-adrenoceptor antagonist prazosin, but not by selective alpha 2- or beta-adrenoceptor antagonists. Furthermore, the norepinephrine dose-response curve was shifted to the right in the presence of cirazoline, without affecting the maximal response. These results suggest that cirazoline behaves as a partial agonist at brain alpha 1-adrenoceptors linked to inositol phospholipid hydrolysis.  相似文献   

12.
We tested the hypothesis that dexmedetomidine (Dex) has greater alpha(2)- vs. alpha(1) selectivity than clonidine and causes more alpha(2)-selective vasoconstriction in the human forearm. After local beta-adrenergic blockade with propranolol, forearm blood flow (plethysmography) responses to brachial artery administration of Dex, clonidine, and phenylephrine (alpha(1)-agonist) were determined in healthy young adults before and after alpha(2)-blockade with yohimbine (n = 10) or alpha(1)-blockade with prazosin (n = 9). Yohimbine had no effect on phenylephrine-mediated vasoconstriction but blunted Dex-mediated vasoconstriction (mean +/- SE: -41 +/- 5 vs. -11 +/- 2%; before vs. after yohimbine) more than clonidine-mediated vasoconstriction (-39 +/- 5 vs. -28 +/- 4%; before vs. after yohimbine) (P < 0.02). Prazosin blunted phenylephrine-mediated vasoconstriction (-39 +/- 4 vs. -8 +/- 2%; before vs. after prazosin) but had similar effects on both Dex- (-30 +/- 4 vs. -39 +/- 6%; before vs. after prazosin) and clonidine-mediated vasoconstriction (-29 +/- 3 vs. -41 +/- 7%; before vs. after prazosin) (P > 0.7). Both Dex and clonidine reduced deep forearm venous norepinephrine concentrations to a similar extent (-59 +/- 12 vs. -55 +/- 10 pg/ml; Dex vs. clonidine, P > 0.6); this effect was abolished by yohimbine and blunted by prazosin. These results suggest that Dex causes more alpha(2)-selective vasoconstriction in the forearm than clonidine. The similar vasoconstrictor responses to both drugs after prazosin might be explained by the presynaptic effects on norepinephrine release.  相似文献   

13.
Based on affinity for WB4101 and susceptibility to chloroethylclonidine, we evaluated the subtype of alpha 1-adrenoceptors activated by phenylephrine (a full agonist) and tizanidine (a partial agonist). The rabbit thoracic aorta and common iliac artery contain both alpha 1A- and alpha 1B-adrenoceptors, but the alpha 1B-subtype may be more predominantly in the common iliac artery than in the thoracic aorta. In rabbit thoracic aorta and common iliac artery, phenylephrine induced contraction through both alpha 1A- and alpha 1B-subtypes and tizanidine through only the alpha 1A-subtype. The subtype activated by phenylephrine may be partly different from that activated by tizanidine in the preparations used herein.  相似文献   

14.
1. The accumulation of [3H]methyltriphenylphosphonium by isolated fat-cells was used to estimate the membrane potential of mitochondria in situ. 2. An alpha-adrenergic receptor-mediated decrease in the apparent accumulation of [3H]methyltriphenylphosphonium was observed. Methoxamine, clonidine and low concentrations of phenylephrine decreased the calculated mitochrondrial membrane potential without significantly raising cyclic AMP levels, adenylate cyclase activity or stimulating lipolysis. The agonist potency order was phenylephrine greater than methoxamine greater than clonidine. 3. The decrease in the calculated mitochondrial membrane potential caused by phenylephrine, clonidine and methoxamine was blocked by the alpha-adrenergic antagonist prazosin but not by yohimbine nor by the beta-antagonist propranolol. This suggests that the effect on the calculated mitochondrial membrane potential may be mediated by alpha 1-like receptors.  相似文献   

15.
This study was intended to quantify the amounts of the alpha1-adrenoceptor subtype mRNAs in human renal artery and to demonstrate the distribution of receptor subtypes responsible for the contraction of the renal artery. RNase protection assay showed that the mean amount of alpha1a mRNA was much greater than that of alpha1b or alpha1d mRNAs in both the main and branch renal arteries. However, the abundance of alpha1a mRNA in human renal artery was much less than in our previous data in the prostate. In situ hybridization showed that all alpha1 subtype mRNAs were localized in the smooth muscle cells of the tunica media of the artery, and the distribution pattern of these three mRNAs in the main artery was the same as in the branch artery. However, the intensity of signals for alpha1d and alpha1b antisense RNAs probes was lower than that for the alpha1a antisense RNA probe. In the functional study, concentration-response curves to noradrenaline pretreated with KMD-3213, an alpha1A/L-adrenoceptor selective antagonist, seemed to be biphasic in nature. Chloroethyclonidine (CEC) failed to inactivate the noradrenaline-induced contraction, and prazosin showed relatively low affinity with a pA2 value of 8.8. These data suggest that the alpha1A/L-adrenoceptor mediates primarily those responses to noradrenaline in this artery. The other alpha1-adrenoceptor subtypes could also mediate the secondary contractile response to noradrenaline in this artery.  相似文献   

16.
The present study aimed at elucidating the molecular identity of the proposed “I1-imidazoline receptors”, i.e. non-adrenoceptor recognition sites via which the centrally acting imidazolines clonidine and moxonidine mediate a major part of their effects. In radioligand binding experiments with [3H]clonidine and [3H]lysophosphatidic acid on intact, 2-adrenoceptor-deficient PC12 cells, moxonidine, clonidine, lysophosphatidic acid and sphingosine-1-phosphate (S1P) competed for the specific binding sites of both radioligands with similar affinities. RNA interference with the rat S1P1-, S1P2- or S1P3-receptor abolished specific [3H]lysophosphatidic acid binding. [3H]Clonidine binding was markedly decreased by siRNA targeting S1P1- and S1P3-receptors but not by siRNA against S1P2-receptors. Finally, in HEK293 cells transiently expressing human S1P3-receptors, sphingosine-1-phosphate, clonidine and moxonidine induced increases in intracellular calcium concentration, moxonidine being more potent than clonidine; this is in agreement with the known properties of the “I1-imidazoline receptors”.

The present results indicate that the “I1-imidazoline receptors” mediating effects of clonidine and moxonidine in PC12 and the transfected HEK293 cells belong to the S1P-receptor family; in particular, the data obtained in PC12 cells suggest that the I1 imidazoline receptors represent a mixture of S1P1- and S1P3-receptors and/or hetero-dimers of both.  相似文献   


17.
In the rat superior mesenteric arteries, the mechanical responses to perivascular nerve stimulation were characterized. The predominant response was contraction mediated by the release of norepinephrine, acting postjunctionally on alpha 1-adrenoceptors. These frequency-dependent contractions were unaffected by the alpha 2-selective adrenoceptor antagonist yohimbine, but were markedly attenuated by clonidine, the alpha 2-selective adrenoceptor agonist. In the presence of prazosin, the alpha 1-selective antagonist, a significant component of the nerve-mediated contraction was still present. At the concentrations used, prazosin, yohimbine, as well as clonidine acted as competitive antagonists of response to exogenous norepinephrine. This differential inhibition of norepinephrine- and nerve-mediated responses suggested the presence of distinct postjunctional adrenoceptors. The effects of clonidine and yohimbine are interpreted to arise from prejunctional modulation of norepinephrine release. In 30 of the 100 vessels studied, there was spontaneous myogenic tone. In these arteries, field stimulation caused frequency- and voltage-dependent relaxations. These responses were neural in origin, dependent on sympathetic nerve activity, but were nonadrenergic and noncholinergic in nature. Naloxone, indomethacin, and substance P inhibited these relaxations with no significant effect on the tone. The opioid agonist, 1-13 dynorphin relaxed these vessels and only naloxone inhibited this response. The effects of these agents were selective against field-stimulated responses since they did not alter the relaxation to the nonspecific agent sodium nitroprusside. These results provide circumstantial evidence for opioid-mediated vascular relaxation that is presynaptically modulated by prostanoids and substance P.  相似文献   

18.
Repeated administration of electroconvulsive shock (ECS) increases [3H]prazosin binding to alpha 1-adrenoceptors in rat cerebral cortex. In contrast, [3H]WB4101 binding in cortex has been reported to be unchanged after ECS. [3H]Prazosin labels two alpha 1-adrenoceptor subtypes, termed alpha 1a and alpha 1b, whereas [3H]WB4101 labels the alpha 1a subtype preferentially. The purpose of this study was to determine whether ECS increases one or both alpha 1-adrenoceptor subtypes in rat cerebral cortex. We found that treatment of rats with ECS once daily for 10-12 days increased [3H]prazosin binding in cortex by about 25% but did not significantly alter [3H]WB4101 binding to alpha 1-adrenoceptors. Measurement of alpha 1a and alpha 1b receptors by competition analysis of the selective alpha 1a antagonist 5-methylurapidil against [3H]prazosin and measurement of [3H]prazosin binding in homogenates preincubated with chlorethylclonidine, which alkylates alpha 1b binding sites, also indicated that the ECS-induced increase in alpha 1-adrenoceptors is confined to the alpha 1b subtype. In contrast to its effect on [3H]prazosin binding, ECS did not increase phosphoinositide hydrolysis as measured by [3H]inositol 1-phosphate accumulation in slices of rat cerebral cortex stimulated by either norepinephrine or phenylephrine. The failure of ECS to increase [3H]inositol 1-phosphate accumulation stimulated by phenylephrine, which is a partial agonist for this response, suggests that spare receptors do not account for the apparent absence of effect of ECS on alpha 1-adrenoceptor-mediated phosphoinositide hydrolysis.  相似文献   

19.
G C Chiou 《Life sciences》1983,32(15):1699-1704
Effects of phenylephrine (alpha 1-adrenergic agonist), prazosin (alpha 1-adrenergic antagonist), clonidine (alpha 2-adrenergic agonist), and yohimbine (alpha 2-adrenergic antagonist) on aqueous humor (AH) dynamics were studied with a cat eye model. Phenylephrine (130 microgram/ml) inhibited AH outflow (67% at 90 min. period) more than AH formation (26% at the same period) indicating the intraocular pressure (IOP) might be raised by the administration of phenylephrine. Prazosin (0.1 microgram/ml) produced effects opposite to those of phenylephrine (55% reduction of AH formation and 25% reduction of AH outflow at 3 hr. period) suggesting the alpha 1-adrenergic receptor is responsible for increases rather than decreases of IOP. Both clonidine (10 microgram/ml) and yohimbine (0.1-1.0 microgram/ml) inhibited AH formation (60% inhibition) more than AH outflow (no inhibition for clonidine and 40% inhibition for yohimbine) to lower IOP. The conventional theory of receptor antagonism does not seem to function at alpha 2-receptor sites.  相似文献   

20.
G Simon  J Filep  T Zelles 《Life sciences》1990,47(22):2021-2025
Alpha adrenergic agonists and antagonists as clonidine, guanfacine, yohimbine, phenylephrine and prazosin inhibited the [3H]-QNB binding to rat brain cortex muscarinic acetylcholine receptor (mAChR, M-1 subtype), heart (M-2 subtype) and parotid gland homogenate (M-3 subtype) in a dose-dependent competitive fashion. Ki values were between 10(-6) and 10(-3) M. Hill coefficients were about 1. No correlation was found between mAChR inhibiting capacity of these drugs and their activity on alpha adrenergic receptors. In contrast, other transmitters, as dopamine, GABA, glutamic acid, histamine, serotonin, isoproterenol and platelet activating factor (PAF) did not affect the QNB binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号