共查询到20条相似文献,搜索用时 15 毫秒
1.
J Duchateau K Hainaut 《European journal of applied physiology and occupational physiology》1991,63(6):458-462
The maximal force and median frequency (MF) of the electromyogram (EMG) power density spectrum (PDS) have been compared in disused (6 weeks' immobilization) and control (contralateral) human adductor pollicis muscles during fatigue induced by voluntary or electrically-triggered (30 Hz) contractions. The results indicated that after 6 weeks' immobilization, MF was not significantly different in disused and control muscles although the force and integrated EMG were drastically reduced during a maximal voluntary contraction (MVC; by 55% and 45%, respectively, n = 8). During sustained 60 s MVC, the force decreased at the same rate in immobilized and control muscles, but the shift of MF towards lower frequency values was smaller (P less than 0.05) in disused muscle as compared to control by (14% vs 28%, respectively). In electrically-induced fatigue, the force decrease and the MF shift were larger after inactivity (41% and 43% in one subject, and 50% and 54% in the other subject, respectively) as compared to control (29% and 34% in one subject, and 37% and 38% in the other subject, respectively). These results emphasize the caution that should be exercised when EMG signals are quantified by computing the power density spectrum. The different effects of fatigue during voluntary and electrically-imposed contractions in disused and control muscles indicated that immobilization induced changes in the neural command for the contraction which compensated, at least in part, for its decreased contractile efficiency and resistance to fatigue. 相似文献
2.
J S Bower T G Sandercock E Rothman P H Abbrecht D R Dantzker 《Journal of applied physiology (Bethesda, Md. : 1985)》1984,57(3):913-916
Diaphragmatic fatigue has been correlated with a change in the electromyogram recorded from the diaphragm (EMGdi), which suggests that the electromyogram is a potential clinical tool to detect respiratory muscle fatigue. Changes in the EMGdi have previously been quantified by using the power spectral parameters high-low ratio or mean frequency. In this study, we developed an autoregressive model of the EMG in an attempt to improve the analysis of the EMGdi. This model was tested on recordings of the EMGdi that were obtained from an esophageal electrode in five normal subjects breathing to fatigue through an inspiratory resistor. The data obtained from the autoregressive model were directly compared with data from the high-low ratio and mean frequency techniques. The autoregressive model showed an excellent correlation with mean frequency. Both techniques were superior to the high-low ratio measurement. Because the autoregressive model requires much less computation than mean frequency and can be easily implemented in real time on a minicomputer, we propose this as a preferable approach. 相似文献
3.
Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles 总被引:1,自引:0,他引:1
Bosco C Cardinale M Tsarpela O 《European journal of applied physiology and occupational physiology》1999,79(4):306-311
The aim of this study was to evaluate the influence of vibration on the mechanical properties of arm flexors. A group of 12 international level boxers, all members of the Italian national team, voluntarily participated in the experiment: all were engaged in regular boxing training. At the beginning of the study they were tested whilst performing forearm flexion with an extra load equal to 5% of the subjects' body mass. Following this. one arm was given the experimental treatment (E; mechanical vibration) and the other was the control (no treatment). The E treatment consisted of five repetitions lasting 1-min each of mechanical vibration applied during arm flexion in isometric conditions with 1 min rest between them. Further tests were performed 5 min immediately after the treatment on both limbs. The results showed statistically significant enhancement of the average power in the arm treated with vibrations. The root mean square electromyogram (EMGrms) had not changed following the treatment but, when divided by mechanical power, (P) as an index of neural efficiency, it showed statistically significant increases. It was concluded that mechanical vibrations enhanced muscle P and decreased the related EMG/P relationship in elite athletes. Moreover, the analysis of EMGrms recorded before the treatment and during the treatment itself showed an enormous increase in neural activity during vibration up to more than twice the baseline values. This would indicate that this type of treatment is able to stimulate the neuromuscular system more than other treatments used to improve neuromuscular properties. 相似文献
4.
Fermin Mallor Teresa Leon Martin Gaston Mikel Izquierdo 《Journal of biomechanics》2010,43(8):1627-1631
The purpose of this study was to analyze exercise-induced leg fatigue during a dynamic fatiguing task by examining the shapes of power vs. time curves through the combined use of several statistical methods: B-spline smoothing, functional principal components and (supervised and unsupervised) classification. In addition, granulometric size distributions were also computed to allow for comparison of curves coming from different subjects. Twelve physically active men participated in one acute heavy-resistance exercise protocol which consisted of five sets of 10 repetition maximum leg press with 120 s of rest between sets. To obtain a smooth and accurate representation of the data, a basis of 180 B-splines was used. Functional principal component (FPC) analysis was used to find the dominant modes of variation in the curves. A multivariate cluster over the FPC scores and a k-nearest neighbor classification led to three interpretable groups corresponding to different levels of fatigue. Fatigue-induced changes in the shapes of the power curves were evident, in which curves progressively flatten and develop a second power peak. In a practical setting FPC analysis greatly reduces dimensionality and the use of granulometries allows for comparison of the curve shapes without distorting the time scale.In contrast to the present methodology, which considers each curve as a datum, classical statistical approaches using summary parameters of time series may lead to limited information about the impact of dynamic fatiguing protocols on kinematic and kinetic time-course changes in curve shapes. 相似文献
5.
With the advancement of contemporary techniques for studies of high-frequency electroencephalograms (EEGs), possible contamination of the EEG with the electromyogram (EMG) of pericranial muscles has raised more and more concern. The aim of the present study was to demonstrate if certain EEG correlates of mental activities can be revealed in a high-frequency scalp EEG in spite of EMG contamination. Nineteen healthy women who performed similar test tasks before and after cosmetic injections of Dysport in various facial regions for reduction of the activity of facial muscles took part in the study. Inductions of emotional states with different valences, memory storing, and extraction of verbal information were used in the test tasks. The default state of rest was examined as well. During performance of the tasks, parallel registrations of the EEG from the scalp surface (19 channels) and EMG from several facial muscles (6 channels) were carried out. Changes in the spectral power in β2 and low γ frequency bands (18–40 Hz) in EEG- and EMG-derivations after Dysport injections were analyzed. Changes in the spectral power in the same bands in pairwise comparisons for the test tasks before and after Dysport injections were also analyzed separately. It was demonstrated that Dysport injections lead to reduction of the EMG power in areas of the injections and to reduction of EEG power in the frontal and temporal derivations. However, the EEG-correlates revealed when comparing different test tasks remained qualitatively invariable as for after and before Disport injections. These facts confirm that EMG makes a noticeable contribution to the electric activity registered from the scalp in the frequency ranges greater than 18 Hz. At the same time, one can see that at least in certain experimental situations the influence of EMG does not make impossible identification of EEG-correlates of mental activity with EEG registration from the head surface at least in the β2 and low γ frequency bands (18–40 Hz). 相似文献
6.
B Gerdle N E Eriksson C Hagberg 《European journal of applied physiology and occupational physiology》1988,57(4):404-408
When using electromyographic techniques in the evaluation of muscular load it is necessary to determine the mathematical relationship between the torque and the amplitude of the electromyographic signal. Isometric gradually increasing contractions up to 100% MVC can then be used. Often more than linear increases for the amplitude (RMS)--force regression have been reported. The present study was designed to test whether changes in power spectral density function take place during a gradually increasing isometric contraction (duration 10 s). Twenty-two clinically healthy females performed an increasing isometric shoulder forward flexion for 10 s using an isokinetic dynamometer. Electromyographic activity was measured in trapezius, deltoid, infraspinatus and biceps brachii using surface electrodes. Mean torque values were determined together with mean power frequency (MPF) and root mean square values (RMS) from the EMG signals for each 256 ms period. The RMS-torque regressions showed higher regression coefficients during the 6th to 9th sec than during the first 5 s. No significant correlation existed between MPF for the four muscles and the torque. A gradual decrease in MPF was generally found from the 6th s. It is concluded that this decrease in power spectral density function might have contributed to the significantly higher regression coefficient for the RMS torque regression at the high output part of the gradually increasing isometric contraction. 相似文献
7.
G Camus H Thys C Lhermerout G Pigeon 《Comptes rendus des séances de la Société de biologie et de ses filiales》1984,178(5):567-571
In normal man, the EMG changes in forearm muscles holding a tension of 30% maximal voluntary strength for 5 minutes are: (1) an increase of integrated EMG, (2) a slight decrease of the median frequency of the EMG power spectrum. These changes are largely reduced with age. 相似文献
8.
Motor unit activity and surface electromyogram power spectrum during increasing force of contraction 总被引:7,自引:0,他引:7
T Moritani M Muro 《European journal of applied physiology and occupational physiology》1987,56(3):260-265
Twelve male subjects were tested to determine the relationship between motor unit (MU) activities and surface electromyogram (EMG) power spectral parameters with contractions increasing linearly from zero to 80% of maximal voluntary contraction (MVC). Intramuscular spike and surface EMG signals recorded simultaneously from biceps brachii were analyzed by means of a computer-aided intramuscular MU spike amplitude-frequency (ISAF) histogram and an EMG frequency power spectral analysis. All measurements were made in triplicate and averaged. Results indicate that there were highly significant increases in surface EMG amplitude (71 +/- 31.3 to 505 +/- 188 microV, p less than 0.01) and mean power frequency (89 +/- 13.3 to 123 +/- 23.5 Hz, p less than 0.01) with increasing force. These changes were accompanied by progressive increases in the firing frequency of MU's initially recruited, and of newly recruited MU's with relatively larger spike amplitudes. The group data in the ISAF histograms revealed significant increases in mean spike amplitude (412 +/- 79 to 972 +/- 117 microV, p less than 0.01) and mean firing frequency (17.8 +/- 5.4 to 24.7 +/- 4.1 Hz, p less than 0.01). These data suggest that surface EMG spectral analysis can provide a sensitive measure of the relative changes in MU activity during increasing force output. 相似文献
9.
Cycling power decreases substantially during a maximal cycling trial of just 30 s. It is not known whether movement patterns and joint powers produced at each joint decrease to a similar extent or if each joint exhibits an individual fatigue profile. Changes in movement patterns and/or joint powers associated with overall task fatigue could arise from several different mechanisms or from a complex interplay of these mechanisms. The purpose of this investigation was to determine the changes in movement and power at each joint during a fatiguing cycling trial. Thirteen trained cyclists performed a 30 s maximal cycling trial on an isokinetic cycle ergometer at 120 rpm. Pedal forces and limb kinematics were recorded. Joint powers were calculated using a sagittal plane inverse dynamics model and averaged for the initial, middle, and final three second intervals of the trial, and normalized to initial values. Relative ankle plantar flexion power was significantly less than all other joint actions at the middle interval (51±5% of initial power; p=0.013). Relative ankle plantar flexion power for the final interval (37±3%) was significantly less than the relative knee flexion and hip extension power (p=0.010). Relative knee extension power (41±5%) was significantly less than relative hip extension power (55±4%) during the final three second interval (p=0.045). Knee flexion power (47±5%) did not differ from relative hip extension power (p=0.06). These changes in power were accompanied by a decrease in time spent extending by each joint with fatigue (i.e., decreased duty cycle, p<0.03). While central mechanisms may have played a role across all joints, because the ankle fatigued more than the hip and knee joints, either peripheral muscle fatigue or changes in motor control strategies were identified as the potential mechanisms for joint-specific fatigue during a maximal 30 s cycling trial. 相似文献
10.
Electromyograms of mammalian extraocular muscles were recorded by means of a coaxial electrode. Besides normal extracellular spike potentials (1-2 msec duration), monophasic waves (with a decline lasting up to 7 msec) were recorded. As to the interpretation of these potential changes in terms of a potential drop that is produced by local currents flowing from the resting region of a fibre towards the active region consideration is given to two cases. First, a propagated active region (spike potentials, at least diphasic) and second, a stationary active region (with resulting monophasic waves). In the EMGs spontaneous monophasic potentials recruit at a lower threshold than spike potentials; frequency changes were observed when head position was altered. The latter are interpreted as local depolarizations occurring at neuromuscular junctions of multiple innervated muscle fibres among those fibre types that compose extraocular muscles. 相似文献
11.
There is no general agreement on whether afferent signals from the extraocular muscles play any part in oculomotor control. However, we have previously shown that they modify the responses of cells in the oculomotor control system during the vestibulo-ocular reflex (VOR). If, as we suspect, these signals have an important role in the control of the VOR from moment-to-moment, we should be able to demonstrate similar, functionally significant, modifications at the output of the reflex. We have recorded the electromyographic activity of several extraocular muscles of the right eye during the VOR and while imposing movements on the left eye. We describe how the activity of the muscles, reflected in the electromyogram, is modified in specific ways depending on the parameters of the imposed eye movements. The effects of the extraocular afferent signals on the eye-muscle responses to vestibular drive during the slow phase of the VOR appear to be corrective. Thus the present results provide strong evidence that afferent signals from the extraocular muscles are concerned in the control of the reflex from moment-to-moment, and suggest that the wider question of their role in oculomotor control merits further consideration. 相似文献
12.
Mamaghani NK Shimomura Y Iwanaga K Katsuura T 《Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science》2002,21(1):29-43
To investigate the behavior of mechanomyogram (MMG) and electromyogram (EMG) signals in the time and frequency domains during sustained isometric contraction, MMG and surface EMG were obtained simultaneously from four muscles: upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR) of 10 healthy male subjects. Experimental conditions consisted of 27 combinations of 9 postures [3 shoulder angles (SA): 0 degree, 30 degrees, 60 degrees and 3 elbow angles (EA): 120 degrees, 90 degrees, 60 degrees] and 3 contraction levels: 20%, 40%, and 60% of maximum voluntary contraction (MVC). Subjective evaluations of fatigue were also assessed using the Borg scale at intervals of 60, 30, and 10 sec at 20%, 40%, and 60% MVC tests, respectively. The mean power frequency (MPF) and root mean square (RMS) of both signals were calculated. The current study found clear and significant relationships among physiological and psychological parameters on the one hand and SA and EA on the other. EA's effect on MVC was found to be significant. SA had a highly significant effect on both endurance time and Borg scale. In all experimental conditions, significant correlations were found between the changes in MPF and RMS of EMG in BB with SA and EA (or muscle length). In all four muscles, MMG frequency content was two or three times lower than EMG frequency content. During sustained isometric contraction, the EMG signal showed the well-known shift to lower frequencies (a continuous decrease from onset to completion of the contraction). In contrast, the MMG spectra did not show any shift, although its form changed (generally remaining about constant). Throughout the contraction, increased RMS of EMG was found for all tests, whereas in the MMG signal, a significant progressive increase in RMS was observed only at 20% MVC in all four muscles. This supports the hypothesis that the RMS amplitude of the MMG signal produced during contraction is highly correlated with force production. Possible explanations for this behavioral difference between the MMG and EMG signals are discussed. 相似文献
13.
C Zijdewind W Bosch L Goessens T W Kandou D Kernell 《European journal of applied physiology and occupational physiology》1990,60(2):127-132
Mechanical and electrical properties were studied for the first dorsal interosseous muscle of the dominant (d-FDI) and non-dominant hand (nd-FDI). Observations were made before, during and after a fatigue test, fatigue being evoked by percutaneous electrical stimulation of the ulnar nerve. The test consisted of 30 Hz bursts of ten supramaximal 0.1 ms pulses, repeated once a second for 5 min. The measurements included the amplitude of the first and fifth compound muscle action potentials (M-waves) within bursts, the peak burst force and the amplitude and time course of single twitches. At the end of the fatigue test, burst force had decreased to about the same extent in the FDI of both hands. The final decline in first M-wave amplitude was, however, significantly more pronounced for the nd-FDI than for the d-FDI. There were no longer any significant discrepancies between the two muscles after a subsequent recovery-period of 15 min. Comparisons among nd-FDI of various individuals demonstrated the presence of significant inter-individual differences in fatigue-related force-drop without any associated differences in M-wave decline. Intra-individual variability was similar for fatigue-related force-drop and M-wave decline. 相似文献
14.
15.
《Journal of electromyography and kinesiology》2014,24(3):380-386
The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30 min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9 × 14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p = 0.03) and decreased MDF (p = 0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. 相似文献
16.
Nadiv Y Vachbroit R Gefen A Elad D Zaretsky U Moran D Halpern P Ratnovsky A 《Journal of applied biomechanics》2012,28(2):139-147
The respiratory muscles may fatigue during prolonged exercises and thereby become a factor that limits extreme physical activity. The aim of the current study was to determine whether respiratory muscle fatigue imposes a limitation on extreme physical activity of well-trained young men. Electromyography (EMG) signals of respiratory (external intercostal and sternomastoid) and calf muscles (gastrocnemius) were measured (N = 8) during 1 hr of treadmill marching at a speed of 8 km/hr with and without a 15 kg backpack. The root mean square (RMS) and the mean power frequency of the EMG signals were evaluated for calculating fatigue indices. The EMG RMS revealed that the respiratory and calf muscles did not fatigue during the marching without a backpack load. The study did show, however, a significant rise in the EMG values when a backpack was carried with respect to the no-load condition (p < .05), which suggests that respiratory muscles should be trained in military recruits who are required to carry loaded backpacks while marching. 相似文献
17.
M. González-Izal A. Malanda I. Navarro-Amézqueta E.M. Gorostiaga F. Mallor J. Ibañez M. Izquierdo 《Journal of electromyography and kinesiology》2010,20(2):233-240
The purpose of this study was to examine acute exercise-induced changes on muscle power output and surface electromyography (sEMG) parameters (amplitude and spectral indices of muscle fatigue) during a dynamic fatiguing protocol. Fifteen trained subjects performed five sets consisting of 10 leg presses (10RM), with 2 min rest between sets. Surface electromyography was recorded from vastus medialis (VM) and lateralis (VL) and biceps femoris (BF) muscles. A number of EMG-based parameters were compared for estimation accuracy and sensitivity to detect peripheral muscle fatigue. These were: Mean Average Voltage, median spectral frequency, Dimitrov spectral index of muscle fatigue (FInsm5), as well as other parameters obtained from a time–frequency analysis (Choi–Williams distributions) such as mean and variance of the instantaneous frequency and frequency variance. The log FInsm5 as a single parameter predictor accounted for 37% of the performance variance of changes in muscle power and the log FInsm5 and MFM as a two factor combination predictor accounted for 44%. Peripheral impairments assessed by sEMG spectral index FInsm5 may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task. 相似文献
18.
19.
20.