首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme-histochemical methods were used to analyse the activities of alkaline phosphatase (AP), dipeptidylpeptidase IV (DPP IV) and adenosine triphosphatase (ATPase) in capillaries of four different human oro-facial muscles, the major and minor zygomatic, the orbicularis oris and buccinator, one masticatory, the masseter and two limb muscles, the biceps brachii and first dorsal interosseus muscles. In all muscles, except for the orbicularis oris, the majority of the capillaries lacked enzyme activity. Therefore, none of these enzymes seems to be reliable as a general marker for human muscle capillaries. In general, the capillaries of the limb muscles and the major and minor zygomatic and the buccinator, were similar in their staining pattern for AP and ATPase, but differed in DPP IV staining. The orbicularis oris muscle differed from the other muscles by showing the largest proportion of capillaries with AP and ATPase activity. The masseter muscle had the largest proportion of capillaries stained for DPP IV. The muscle specific differences in enzyme activity of the capillaries are in agreement with our previous findings of specific differences between limb, oro-facial and masticatory muscles with respect to capillary supply and composition of fibre types and myosins. The results reflect functional specialization of the capillary bed of human muscles.  相似文献   

2.
A case of functional support for distant flap reconstruction of the entire lower lip and mandibular symphysis following resection of an aggressive recurrent basal cell carcinoma of the lip is presented. Resection of the entire lower lip and mandibular symphysis includes loss of the orbicularis oris and attached muscles of the modiolus as well as the buccinator and masseter muscles. Without the support of these muscles, control of saliva as well as solid and liquid food is lost and articulation is hampered. In this case, fasciae latae strips attached to distally transected temporalis muscle tendons were tunneled bilaterally into the lower lip and chin area, which had been previously reconstructed with deltopectoral and pectoralis major musculocutaneous flaps.  相似文献   

3.
Changes in the EMG power spectrum during static fatiguing contractions are often attributed to changes in muscle fibre action potential conduction velocity. Mathematical models of the EMG power spectrum, which have been empirically confirmed, predict that under certain conditions a distinct maximum occurs in the low-frequency part of the spectrum, indicating the dominant firing rate of the motor units. The present study investigated the influence of this firing rate peak on the spectral changes during a static fatiguing contraction at 50% of maximum EMG amplitude in the frontalis and corrugator supercilii muscles. An exponential decrease of the median frequency (MF) of the EMG power spectrum was observed when the firing rate peak was absent. When the firing rate peak was present, an exaggerated decrease of MF in the beginning of the contraction was found, which was associated with an increase in firing rate peak magnitude. In later stages of the contraction, a partial recovery of MF occurred, concomitant with a decrease in firing rate peak magnitude. The influence of the firing rate peak on MF was also investigated during nonfatiguing contractions of the frontalis muscle at 20, 40, 60, and 80% of maximum EMG amplitude. A curvilinear relationship between MF and contraction strength was found, whether firing rate peaks were present or absent. The presence of firing rate peaks, however, was associated with a decrease in MF which was inversely related to contraction strength, due to the inverse relationship between firing rate peak magnitude and contraction strength.  相似文献   

4.
We examined masseter and temporalis recruitment and firing patterns during chewing in five male Belanger's treeshrews (Tupaia belangeri), using electromyography (EMG). During chewing, the working-side masseters tend to show almost three times more scaled EMG activity than the balancing-side masseters. Similarly, the working-side temporalis muscles have more than twice the scaled EMG activity of the balancing-side temporalis. The relatively higher activity in the working-side muscles suggests that treeshrews recruit less force from their balancing-side muscles during chewing. Most of the jaw-closing muscles in treeshrews can be sorted into an early-firing or late-firing group, based on occurrence of peak activity during the chewing cycle. Specifically, the first group of jaw-closing muscles to reach peak activity consists of the working-side anterior and posterior temporalis and the balancing-side superficial masseter. The balancing-side anterior and posterior temporalis and the working-side superficial masseter peak later in the power stroke. The working-side deep masseter peaks, on average, slightly before the working-side superficial masseter. The balancing-side deep masseter typically peaks early, at about the same time as the balancing-side superficial masseter. Thus, treeshrews are unlike nonhuman anthropoids that peak their working-side deep masseters early and their balancing-side deep masseters late in the power stroke. Because in anthropoids the late firing of the balancing-side deep masseter contributes to wishboning of the symphysis, the treeshrew EMG data suggest that treeshrews do not routinely wishbone their symphyses during chewing. Based on the treeshrew EMG data, we speculate that during chewing, primitive euprimates 1) recruited more force from the working-side jaw-closing muscles as compared to the balancing-side muscles, 2) fired an early group of jaw-closing muscles followed by a second group of muscles that peaked later in the power stroke, 3) did not fire their working-side deep masseter significantly earlier than their working-side superficial masseter, and 4) did not routinely fire their balancing-side deep masseter after the working-side superficial masseter.  相似文献   

5.
Most previously published electromyographic (EMG) studies have indicated that the temporalis muscles in humans become almost electrically quiet during incisai biting. These data have led various workers to conclude that these muscles may contribute little to the incisai bite force. The feeding behavior and comparative anatomy of the incisors and temporalis muscles of certain catarrhine primates, however, suggest that the temporalis muscle is an important and powerful contributor to the bite force during incision. One purpose of this study is to analyze the EMG activity of the masseter and temporalis muscles in both humans and macaques with the intention of focusing on the conflict between published EMG data on humans and inferences of muscle function based on the comparative anatomy and behavior of catarrhine primates. The EMG data collected from humans in the present study indicate that, in five of seven subjects, the masseter,anterior temporalis, and posterior temporalis muscles are very active during apple incision (i.e., relative to EMG activity levels during apple and almond mastication). In the other two human subjects the EMG levels of these muscles are lower during incision than during mastication, but in no instance are these muscles ever close to becoming electrically quiet. The EMG data on macaques indicate that, in all six subjects, the masseter, anterior temporalis, and posterior temporalis muscles are very active during incision. These data are in general agreement with inferences on muscle function that have been drawn from the comparative anatomy and behavior of primates, but they do not agree with previous experimental data. The reason for this disagreement is probably due to differences in the experimental procedure. In previous studies subjects simply bit isometrically on their incisors and the resulting EMG pattern was compared to the pattern associated with powerful clenching in centric occlusion. In the present study the subjects incised into actual food objects, and the resulting EMG pattern was compared to the pattern associated with mastication of various foods. It is not surprising that these two procedures result in markedly different EMG patterns, which in turn result in markedly different interpretations of jaw-muscle function. In an attempt to explain the evolution of the postorbital septum in anthropoids, it has been suggested that the anterior temporalis is more active than the masseter during incision (Cachel, 1979). The human and macaque EMG data do not support this hypothesis; during incision, the two muscles show no consistent differences in humans and the masseter appears to be in fact more active than the anterior temporalis in macaques.  相似文献   

6.
Muscles that act on glabellar skin: a closer look   总被引:6,自引:0,他引:6  
The coronal incision forehead lift became a component of the face-lift procedure 35 years ago and increased the cosmetic benefit for the facial aesthetic surgery patient. Later, this enhanced cosmetic effect achieved from eyebrow resuspension was complemented by treatment of the glabellar skin lines by modifying corrugator supercilii and procerus muscle function through the same coronal incision. In recent years, newer procedures for treating the corrugator supercilii and procerus muscles by using endoscopy or limited incision techniques have eliminated the need for the coronal incision. With these newer techniques has come a renewed interest in the surgical anatomy of the muscle complex that acts on glabellar skin. This study was designed to examine the current understanding of the anatomy of these muscles and to resolve misconceptions and controversy concerning them. Fresh cadaver dissections and simulated muscle action studies done on the glabellar musculature of four specimens were correlated with nerve blockade studies performed in 10 subjects on the temporal and zygomatic branches of the facial nerve. The presence of the depressor supercilii muscle as a distinct entity was confirmed. The little-appreciated oblique head of the corrugator supercilii muscle was identified. The conclusions from this study suggest that the transverse head of the corrugator supercilii muscle produces the vertical component of the glabellar skin line and also contributes to the formation of the oblique component of the glabellar skin line. The oblique head of the corrugator supercilii muscle, the depressor supercilii muscle, and the medial head of the orbital portion of the orbicularis oculi muscle all appear to depress the medial head of the eyebrow and contribute to the formation of the oblique glabellar skin line. The nerve block study provided evidence that the zygomatic branch of the facial nerve supplies the three medial eyebrow depressor muscles, which opens the possibility for future nerve ablation techniques to control the action of the medial eyebrow depressor muscle group. This nerve block study also supports the concept of "physiologic" elevation of the medial eyebrow as an effective component of foreheadplasty.  相似文献   

7.
EMG median power frequency of the calf muscles was investigated during an exhausting treadmill exercise. This exercise was an uphill run, the average endurance time was 1.5 min. Median power frequency of the calf muscles declined by more than 10% during this exercise. In addition EMG median power frequency of isometric contractions of the same muscles was measured before and in one minute intervals for 10 min after this run. Immediately after the run isometric median power frequency had declined by less than 5% for the soleus muscle, more than 10% for the gastrocnemius medialis and gastrocnemius lateralis muscles. In the 10 min following exercise the isometric median power frequency increased to pre-execise levels. Maybe the median power frequency shift to lower frequencies during dynamic exercise can be interpreted as a sign of local muscle fatigue.  相似文献   

8.
The major purpose of this study is to analyze anterior and posterior temporalis muscle force recruitment and firing patterns in various anthropoid and strepsirrhine primates. There are two specific goals for this project. First, we test the hypothesis that in addition to transversely directed muscle force, the evolution of symphyseal fusion in primates may also be linked to vertically directed balancing-side muscle force during chewing (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). Second, we test the hypothesis of whether strepsirrhines retain the hypothesized primitive mammalian condition for the firing of the anterior temporalis, whereas anthropoids have the derived condition (Weijs [1994] Biomechanics of Feeding in Vertebrates; Berlin: Springer-Verlag, p. 282-320). Electromyographic (EMG) activities of the left and right anterior and posterior temporalis muscles were recorded and analyzed in baboons, macaques, owl monkeys, thick-tailed galagos, and ring-tailed lemurs. In addition, as we used the working-side superficial masseter as a reference muscle, we also recorded and analyzed EMG activity of the left and right superficial masseter in these primates. The data for the anterior temporalis provided no support for the hypothesis that symphyseal fusion in primates is linked to vertically directed jaw muscle forces during mastication. Thus, symphyseal fusion in primates is most likely mainly linked to the timing and recruitment of transversely directed forces from the balancing-side deep masseter (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). In addition, our data demonstrate that the firing patterns for the working- and balancing-side anterior temporalis muscles are near identical in both strepsirrhines and anthropoids. Their working- and balancing-side anterior temporalis muscles fire asynchronously and reach peak activity during the power stroke. Similarly, their working- and balancing-side posterior temporalis muscles also fire asynchronously and reach peak activity during the power stroke. Compared to these strepsirrhines, however, the balancing-side posterior temporalis of anthropoids appears to have a relatively delayed firing pattern. Moreover, based on their smaller W/B ratios, anthropoids demonstrate a relative increase in muscle-force recruitment of the balancing-side posterior temporalis. This in turn suggests that anthropoids may emphasize the duration and magnitude of the power stroke during mastication. This hypothesis, however, requires additional testing. Furthermore, during the latter portion of the power stroke, the late activity of the balancing-side posterior temporalis of anthropoids apparently assists the balancing-side deep masseter in driving the working-side molars through the terminal portion of occlusion.  相似文献   

9.
Electromyographical (EMG) activity was recorded bilaterally from the masseter and temporalis muscles of alert ferrets (Mustela putorius furo) during mastication and crushing. Electromyographic activity was also recorded during biting while a bite-force transducer placed between the carnassial teeth registered forces ranging from 1.5 to 48.8 N. Linear regression analysis demonstrates that temporalis and masseter EMG activity are linearly related to bite force. Electromyographic activity from the balancing-side muscles is nearly equal to EMG activity of the working-side muscles during bone crushing with the carnassial teeth. It is hypothesized that a high percentage of balancing-side muscle activity in ferrets can be recruited during carnassial biting because the postglenoid process prevents ventral displacement of the working-side mandibular condyle.  相似文献   

10.
Jancke  L.; Kaufmann  N. 《Chemical senses》1994,19(2):99-111
Two experiments were undertaken to examine whether facial responsesto odors correlate with the hedonic odor evaluation. Experiment1 examined whether subjects (n = 20) spontaneously generatedfacial movements associated with odor evaluation when they aretested in private. To measure facial responses, EMG was recordedover six muscle regions (M. corrugator supercilii, M. procerus,M. nasalis, M. levator, M. orbicularis oculi and M. zygomaticusmajor) using surface electrodes. In experiment 2 the experimentalgroup (n = 10) smelled the odors while they were visually inspectedby the experimenter sitting in front of the test subjects. Thecontrol group (n = 10) performed the same experimental conditionas those subjects participating in experiment 1. Facial EMGover four mimetic muscle regions (M. nasalis, M. levator, M.zygomaticus major, M. orbicularis oculi) was measured whilesubjects smelled different odors. The main findings of thisstudy may be summarized as follows: (i) there was no correlationbetween valence rating and facial EMG responses; (ii) pleasantodors did Dot evoke smiles when subjects smelled the odors inprivate; (iii) in solitude, highly concentrated malodors evokedfacial EMG reactions of those mimetic muscles which are mainlyinvolved in generating a facial display of disgust; (iv) thosesubjects confronted with an audience showed stronger facialreactions over the periocular and cheek region (indicative ofa smile) during the smelling of pleasant odors than those wbosmelled these odors in private; (v) those subjects confrontedwith an audience showed stronger facial reactions over the M.nasalis region (indicative of a display of disgust) during thesmelling of malodors than those who smelled the malodors inprivate. These results were taken as evidence for a more socialcommunicative function of facial displays and strongly mitigatesthe reflexive-hedonic interpretation of facial displays to odorsas supposed by Steiner.  相似文献   

11.
Frontal plane mandibular movements during mastication and the associated electromyographic (EMG) activity for left and right superficial masseter, posterior temporalis, anterior temporalis, and anterior belly of the digastric (ABD) were studied for two adult male Macaca mulatta by the new technique of “contour” analysis. Contour analysis allowed graphic and quantitative portrayal of multiple chew cycle patterns of mandibular movement and EMG activity during active mastication. A series of computer programs (ATS, ATSED, ATSXYZ) facilitated the collection, editing and definition, and finally processing of these masticatory data into contour plots. These preliminary data indicated the essential symmetry of mandibular movement patterns, high chew cycle variability inferior to occlusion, multiple centers of intense EMG activity for balancing-side superficial masseter, and no difference between working-side anterior and posterior temporalis EMG patterns. Maximum EMG amplitude was found in the area of buccal phase power stroke (BPS). Maximum EMG amplitude for ABD was located medial and inferior to occlusion; all other muscle maximum amplitudes were buccal and inferior to occlusion. The location of maximum EMG amplitudes for superficial masseter and ABD were closer to occlusion (more superior) during mastication of carrot than were maximum amplitudes during biscuit mastication. The absence of any detectable shift of EMG maximum amplitude location between biscuit and carrot for posterior and anterior temporalis suggested, along with the continuous EMG activity of working-side posterior temporalis, a secondary role for the temporalis (compensation for superficial masseter activity) during active mastication.  相似文献   

12.
Anthropoids and tarsiers are distinguished from all other vertebrates by the possession of a postorbital septum, which is formed by the frontal, alisphenoid, and zygomatic bones. Cartmill [(1980) In: Evolutionary Biology of the New World Monkeys and Continental Drift. New York: Plenum, p 243-274] suggested that the postorbital septum evolved in the stem lineage of tarsiers and anthropoids to insulate the eye from movements arising in the temporal fossa. Ross [(1996) Am J Phys Anthropol 91:305-324] suggested that the septum insulates the orbital contents from incursions by the line of action of the anterior temporal muscles caused by the unique combination of high degrees of orbital frontation and convergence. Both of these hypotheses must explain why insulation of the orbital contents could not be achieved by decreasing the size of the anterior temporal musculature with a corresponding increase in size of the remaining jaw adductors, rather than evolving a postorbital septum. One possibility is that the anterior temporalis is an important contributor to vertically directed bite forces during all biting and chewing activities. Another possibility is that reduction in anterior temporal musculature would compromise the ability to produce powerful bite forces, either at the incisors or along the postcanine toothrow. To evaluate these hypotheses, electromyographic (EMG) recordings were made from the masseter muscle and the anterior and posterior portions of the temporalis muscles of two owl monkeys, Aotus trivirgatus. The EMG data indicate that anterior temporalis activity relative to that of the superficial masseter is lower during incision than mastication. In addition, activity of the anterior temporalis is not consistently higher than the posterior temporalis during incision. The data indicate relatively greater activity of anterior temporalis compared to other muscles during isometric biting on the postcanine toothrow. This may be due to decreased activity in superficial masseter and posterior temporalis, rather than elevated anterior temporalis activity. The anterior temporalis is not consistently less variable in activity than the superficial masseter and posterior temporalis. The EMG data gathered here indicate no reason for suggesting that the anterior temporal muscles in anthropoids are utilized especially for incisal preparation of hard fruits. Maintenance of relatively high EMG activity in anterior temporalis across a wide range of biting behaviors is to be expected in a vertically oriented and rostrally positioned muscle such as this because, compared to the posterior temporalis, superficial masseter and medial pterygoid, it can contribute relatively larger vertical components of force to bites along the postcanine toothrow. The in vivo data do not support this hypothesis, possibly because of effects of bite point and bite force orientation.  相似文献   

13.
The aims of the present study were (1) to investigate the differences in median frequency characteristics between back and hip muscles of healthy subjects during a Biering-Sørensen test, (2) to determine if the Biering-Sørensen test is a valid test for measuring back muscle fatigue, and (3) to standardise the Biering-Sørensen test by using objective movement analysis when defining endurance time, and compare this to the original method based on tactile feedback. Twenty healthy subjects participated in this experiment. The electromyographic activity of eight back and hip muscles was bilaterally measured. In addition three-dimensional data of the lumbar region were collected with an ultrasound movement analysis system. Median frequencies were computed from the EMG power spectra. Two methods of determining the endurance time of the Biering-Sørensen test yielded highly correlated but significantly different normalized median frequency slope values (NMFslope). Significant differences in NMFslope values between several back and hip muscles could be demonstrated. Low to moderate correlation coefficients were shown between NMFslope values and endurance time. Multiple stepwise linear regression analyses revealed that only NMFslope of the thoracic part of the iliocostalis lumborum muscle could significantly predict the test endurance time. The findings of the present study support the validity of the Biering-Sørensen test for measuring back muscle fatigue.  相似文献   

14.
Jaw-muscle electromyographic (EMG) patterns indicate that compared with thick-tailed galagos and ring-tailed lemurs, anthropoids recruit more relative EMG from their balancing-side deep masseter, and that this muscle peaks late in the power stroke. These recruitment and firing patterns in anthropoids are thought to cause the mandibular symphysis to wishbone (lateral transverse bending), resulting in relatively high symphyseal stresses. We test the hypothesis that living strepsirrhines with robust, partially fused symphyses have muscle recruitment and firing patterns more similar to anthropoids, unlike those strepsirrhines with highly mobile unfused symphyses. Electromyographic (EMG) activity of the superficial and deep masseter, anterior and posterior temporalis, and medial pterygoid muscles were recorded in four dentally adult Verreaux's sifakas (Propithecus verreauxi). As predicted, we find that sifaka motor patterns are more similar to anthropoids. For example, among sifakas, recruitment levels of the balancing-side (b-s) deep masseter are high, and the b-s deep masseter fires late during the power stroke. As adult sifakas often exhibit nearly complete symphyseal fusion, these data support the hypothesis that the evolution of symphyseal fusion in primates is functionally linked to wishboning. Furthermore, these data provide compelling evidence for the convergent evolution of the wishboning motor patterns in anthropoids and sifakas.  相似文献   

15.
Electromyographic silent periods (EMG SP) and occlusal contact intensity were studied in 31 young patients (9-18 years of age) having different types of malocclusion. EMG SP was induced from bilateral temporalis and masseter muscles by chin tapping during isometric contraction. The simple silent period (SSP), depressed activity (DP) and double silent period (2SP or 3SP) were classified according to the character of silence. The occlusal contact intensity was obtained by using a polymer wafer for clenching and was analysed with a photocclusion analyser. It was found that the average amplitude of temporalis and masseter muscles during clenching was about 400 microV. The mean SSP was around 34 msec. The total SP was around 40 msec in temporalis and 44 msec in masseter. All of the subjects demonstrated one or more DP in ten taps while 18 of them had 2SP or 3SP. The difference in contact intensity between right and left had a strong correlation with the EMG SSP+DP, SSP+2SP3SP and total SP. Anterior-posterior difference was not as strongly related to SP parameters. Less significant correlation was found between SSP and occlusal intensity. It is concluded that the influence of occlusion on EMG SP is basically related to the uneven occlusal contact between the two sides rather than the total occlusal contact intensity or the difference in intensity anterior-posteriorly.  相似文献   

16.
The aim of the study was to evaluate the effect of bolus hardness on the kinematic of mastication and jaw-elevator muscle activity in subjects with normal dental occlusion and function. The mandibular motion and the surface EMG envelope of the masseter and temporalis anterior muscles were assessed in twelve subjects during mastication of a soft and hard bolus of the same size. When chewing the hard bolus, the chewing pattern in the frontal plane was significantly higher and wider, with smaller closure angle and higher peak velocity than when chewing the soft bolus. EMG peak amplitude of both the masseter and anterior temporalis muscles was higher for the side of the bolus but the contralateral side increased its activity significantly more than the ipsilateral side when the hardness of the bolus increased (for the masseter, mean ± SD: 130.4 ± 108.1% increase for the contralateral side and 29.6 ± 26.9% for the ipsilateral side). Moreover, the peak EMG activity for both muscles occurred more distant from the closure point with hard bolus. The increased activity of the contralateral side may help maintaining the mandibular equilibrium, with indirect participation to the power stroke generated by the chewing-side masseter. The results provide kinematic and EMG adaptations to bolus hardness in healthy subjects and can be used as normative data in the development of methods for early diagnosis of impaired chewing function.  相似文献   

17.
To assess the surface electromyographic spectral characteristics of masticatory and neck muscles during the performance of maximum voluntary clench (MVC) tasks, 29 healthy young adults (15 men, 14 women, mean age 22 years) were examined. Electromyography of masseter, temporalis and upper trapezius muscles was performed during 5-s MVCs either on cotton rolls or in intercuspal position. Using a fast Fourier transform, the median power frequency (MPF) was obtained for the first and last seconds of clench, and compared between sexes, muscles, sides, tests and time intervals using ANOVAs.On average, the MPFs did not differ between sexes or sides (p > 0.05), but significant effects of muscle (MPF temporalis larger than masseter, larger than trapezius muscles), test (larger MPFs when clenching in intercuspal position than when clenching on cotton rolls) and time (larger MPFs in the first than in the fifth second of clench) were found.In conclusion, a set of data to characterize the sEMG spectral characteristics of jaw and neck muscles in young adult subjects performing MVC tasks currently in use within the dental field was obtained. Reference values may assist in the assessment of patients with alterations in the cranio-cervical-mandibular system.  相似文献   

18.
IntroductionBack muscle capacity is impaired in chronic low back pain patients but no motivation-free test exists to measure it. The aims of this study were to assess the reliability and criterion validity of electromyographic indices of muscle fatigue during an intermittent absolute endurance test.MethodsHealthy subjects (44 males and 29 females; age: 20–55 yrs) performed three maximal voluntary contractions (MVC) and a fatigue test while standing in a static dynamometer. Surface EMG signals were collected from four pairs of back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10). The fatigue test, assessing absolute endurance (90-Nm torque), consisted in performing an intermittent extension task to exhaustion. Strength was defined as the peak MVC whereas our endurance criterion was defined as the time to reach exhaustion (Tend) during the fatigue test. From the first five min (females) or ten min (males) of EMG data, frequency and time-frequency domain analyses were applied to compute various spectral indices of muscle fatigue.ResultsThe EMG indices were more reliable when computed from the time-frequency domain than when computed from the frequency domain, but showed comparable correlation results (criterion validity) with Tend and Strength. Some EMG indices reached moderate to good correlation (range: 0.64–0.69) with Tend, lower correlations (range: 0.39–0.55) with Strength, and good to excellent between-day test-retest reliability results (intra-class correlation range: 0.75–0.83). The quantification of the spectral content more locally in different frequency bands of the power spectrum was less valid and reliable than the indices computed from the entire power spectrum. Differences observed among muscles were interpreted in light of specific neuromuscular activation levels that were observed during the endurance test. These findings supported the use of an intermittent and time-limited (5–10 min) absolute endurance test, that is a practical way to assess the back capacity of chronic low back pain subjects, to assess absolute endurance as well as strength with the use of electromyographic indices of muscle fatigue.  相似文献   

19.
Although the FEED database focuses on muscle activity patterns, it is equally suitable for other physiological recording and especially for synthesizing different types of information. The present contribution addresses the interaction between muscle activity and ligamentary stretch during mastication. The postorbital ligament is the thickened edge of a septum dividing the orbital contents from the temporal fossa and is continuous with the temporal fascia. As a tensile element, this fascial complex could support the zygomatic arch against the pull of the masseter muscle. An ossified postorbital bar has evolved repeatedly in mammals, enabling resistance to compression and shear in addition to tension. Although such ossification clearly reinforces the skull against muscle pull, the most accepted explanation is that it helps isolate the orbital contents from contractions of the temporalis muscle. However, it has never been demonstrated that the contraction of jaw muscles deforms the unossified ligament. We examined linear deformation of the postorbital ligament in minipigs, Sus scrofa, along with electromyography of the jaw muscles and an assessment of changes in pressure and shape in the temporalis. During chewing, the ligament elongated (average 0.9%, maximum 2.8%) in synchrony with the contraction of the elevator muscles of the jaw. Although the temporalis bulged outward and created substantial pressure against the braincase, the superficial fibers usually retracted caudally, away from the postorbital ligament. In anesthetized animals, stimulating either the temporalis or the masseter muscle in isolation usually elongated the ligament (average 0.4-0.7%). These results confirm that contraction of the masticatory muscles can potentially distort the orbital contents and further suggest that the postorbital ligament does function as a tension member resisting the pull of the masseter on the zygomatic arch.  相似文献   

20.
Facial morphology and vibrissal movement in the golden hamster   总被引:4,自引:0,他引:4  
The major cranial vibrissae in the golden hamster can be moved in complex ways that suggest they are served by a finely controlled motor system. Movements are hypothesized to be the products of differential blood flow and pressure regulation in the sinus surrounding each vibrissal follicle, contractions of the striated facial muscles, and elastic rebound in the connective tissues. The vasculature contributes hydrostatic forces that erect the vibrissae slightly and distort their connective tissue bedding, rigidify the vibrissal capsules, thus forming firm bases of attachment for certain facial muscles, and theoretically provide a pressure plate around the follicle, important in lowering the firing thresholds of receptor endings. The facial muscles supply the major forces in erection and protraction of the vibrissae by acting on both the capsules and the connective tissue bedding. The connective tissues are organized into capsular and extracapsular systems that serve to stabilize the vibrissae and return them to initial rest positions. The slight movements of the genal vibrissa are the effects of vascular and connective tissue dynamics, the musculature being uninvolved. Wide angle movements of the supraorbital vibrissae are products of the vasculature and connective tissues, plus contractions of the Mm. orbicularis oculi and frontalis. Mystacial vibrissal movement is quite complex. The vasculature supplies a small degree of capsular erection and mystacial pad distortion, but primarily rigidifies the capsules. The bulk of erection and protraction is produced by the M. nasolabialis profundus (NLP) and the vibrissal capsular muscles (VCM). The NLP distorts the mystacial pad; the VCM tilt the capsules relative to the pad. Retraction is mainly accomplished by elastic rebound in the pad, this being aided in its extreme degrees by the Mm. nasolabialis and maxillolabialis. The Mm. nasolabialis superficialis and buccinator pars orbicularis oris help to spread the vibrissae into a dorsoventral fan and stabilize the mystacial pad during whisking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号