首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ca on Cu toxicity in runner bean plants (Phaseolus coccineus L. cv. Piěkny Jaś) grown hydroponically in nutrient solution was studied. The toxic effect of excess Cu on plants depends on their age and Ca content in the medium. Copper applied in excess to the plants at the early phase of leaf development strongly limits the uptake of Ca ions from the nutrient solution, particularly their translocation to leaves. Increased Ca content limits the inhibitory effect of Cu on leaf growth and decreases the content of chloroplast pigments to the level approximate to that of control. At this growth stage the effect of excess Cu is at least partially connected with limited Ca transport to leaves. At the intermediate leaf phase Cu-treated plants react slightly to changed Ca content. At the end of the primary leaf development increased Ca concentration in the medium intensifies senescence processes induced by excess Cu. The changes are partially connected with intensified water deficit. Increased Ca content in the nutrient solution limits Cu accumulation in the individual organs of Cu-treated plants. However, Cu accumulation in leaves is not decreased at a high level of Ca. Copper generally decreases Ca content in the youngest plants, whereas in the oldest ones only in the case of a low level of Ca in the nutrient solution.  相似文献   

2.
Calcium and Salt Toleration by Bean Plants   总被引:9,自引:0,他引:9  
The role of calcium in the salt relations of the bean plant, Phaseolus vulgaris, was examined. Brittle wax bush bean plants were cultured in nutrient solutions containing 50 mM NaCl. In the absence of added calcium the plants showed a general breakdown of the roots. A low concentration of calcium in the nutrient solution (0.1 mM) prevented this. Without added calcium the plants absorbed and translocated sodium at such a rate that high concentrations of it built up in the leaves within two days. With increasing concentrations of calcium in the nutrient solution the leaves contained progressively less sodium, and at 3 mM CaSO4 the concentrations of sodium in the leaves was equal to that of the control plants grown without addition of salt. Even after both roots and stems had reached a high concentration of sodium, the leaves of plants grown in the presence of adequate concentrations of calcium contained little sodium.  相似文献   

3.
Two-year-old Navel orange scions (Citrus sinensis (L.) Osbeck) budded to either Cleopatra mandarin (C. reticulata) and Troyer citrange (C. sinensis × P. trifoliata) rootstocks were used in this experiment. Cleopatra manda in rootstock was considered more tolerant to salinity than Troyer citrange, and this property was attributed to a greater capacity to exclude chloride ions.Plants were grown under glasshouse conditions and supplied with nutrient solution containing either no or 45 mM NaCl. Calcium concentration was increased from 3 to 30 mM. Sodium, potassium, calcium and chloride concentrations in plant organs were analyzed after 90 days of treatment.Supplemental Ca was found to mitigate the adverse effects of salinity on plant growth, defoliation or leaf injury.Chemical analysis indicated that in plants grafted on Troyer citrange Ca restricted uptake and subsequent translocation of Na to the leaves and increased K concentration in both roots and leaves. However, in Cleopatra mandarin-grafted plants increasing Ca levels seemed to reduce transport of Na from roots to leaves, and Na accumulation in roots was associated with reduced concentration of K in this rootstock.Organ chloride analysis showed that Cl accumulation in leaves of plants grafted on both rootstocks was reduced when external Ca concentration increased, whereas Cl concentration in roots remained constant or increased. The data of distribution of Cl in plants showed that a high external Ca level increased Cl accumulation in the basal stem and roots, and reduced the transport of Cl from roots to leaves.  相似文献   

4.
Plant growth and seed yield of mung bean were studied in sand culture at different levels of NaCl [0, 50, 100, 150, 200, 250 mM] in the root medium. Results showed that both dry matter yield and seed yield of plants grown for 14 weeks at 50 mM NaCl and 100 mM NaCl were around 60 % and 25 %, respectively of those for plants grown in control solution. Higher concentrations caused wilting and necrosis of leaves. Very effective exclusion of Na and Cl from salt grown mung bean seed was observed with concommitant high accumulation of Na and Cl in the stem. It is speculated that mung bean plant stem may act as a ‘sink’ for NaCl during the reproductive stage of the plant growth cycle.  相似文献   

5.
Ten day old bush bean plants (Phaseolus vulgaris L. cv Contender) were used to analyze the effects of 3 micromolar Cd on the time courses of expansion growth, dry weight, leaf water relations, stomatal resistance, and abscisic acid (ABA) levels in roots and leaves. Control and Cd-treated plants were grown for 144 hours in nutrient solution. Samples were taken at 24 hour intervals. At the 96 and 144 hour harvests, additional measurements were made on excised leaves which were allowed to dry for 2 hours. From the 48 hour harvest, Cd-treated plants showed lower leaf relative water contents and higher stomatal resistances than controls. At the same time, root and leaf expansion growth, but not dry weight, was significantly reduced. The turgor potentials of leaves from Cd-treated plants were nonsignificantly higher than those of control leaves. A significant increase (almost 400%) of the leaf ABA concentration was detected after 120 hours exposure to Cd. But Cd was found to inhibit ABA accumulation during drying of excised leaves. It is concluded that Cd-induced decrease of expansion growth is not due to turgor decrease. The possible mechanisms of Cd-induced stomatal closure are discussed.  相似文献   

6.
PRAMER  D. 《Annals of botany》1954,18(4):463-470
The concentration of chloramphenicol in treated plants varieddirectly with that in solution over a range of 10–500µg./ml.Cut shoots contained more antibiotic than rooted plants. Chloramphenicolwas distributed throughout plants treated with 200µg./ml.solutions for 19 hours, but the concentration at the base ofplants was greater than that at the top. When treatment wascontinued for 5 days the concentration of chloramphenicol wasuniform throughout the plant. If, following treatment, the plantswere grown in water for 5 days, top leaves contained more antibioticthan lower leaves. The accumulation of chloramphenicol in rootedbroad bean plants was a linear function of water uptake. Rooted broad bean plants grown for 18 hours in streptomycinsolutions containing 500µg./ml. had a trace of antibioticin bottom leaves only. No streptomycin was present in plantstreated with less concentrated antibiotic solutions. Streptomycinmoved more readily in cut shoots of broad bean and cut shootsand rooted tomato plants, but the antibiotic content of bottomleaves was much greater than that of top leaves. The accumulationof streptomycin in rooted broad bean plants was exceedinglyslow.  相似文献   

7.
Certain soybean [Glycine max (L.) Merr.] cultivars that are grown in saline nutrient cultures are killed when the inorganic phosphate (Pi) concentration in the substrate exceeds 0.10 mM. To determine the role of Na and Cl on this adverse salinity×Pi interaction, four cultivars, Clark, Clark 63, Lee, and Lee 74 were grown in the greenhouse in nutrient solutions salinized with 1) Cl and NO3 salts to produce treatments with variable amounts of Cl or 2) with NaCl or KCl and CaCl2 to obtain treatments with and without Na. At an osmotic potential of ?0.34 MPa, all salts enhanced Pi uptake and accumulation in the tissue of plants grown in ≧0.12 mM substrate Pi. Leaf Cl concentration was linearly related (r2≥0.9) to the mole fraction (mf) of Cl in the substrate, therefore excess substrate NO3 did not greatly influence leaf Cl accumulation. Foliar injury was only observed on plants grown in saline solutions at high Pi (≥0.12 mM) and was not alleviated when KCl replaced NaCl in the substrate. This indicates that Na did not play a direct role in the salinity×Pi interaction. However, as the mf of Cl increased, severity of injury increased. The severity of injury, and its symptoms, were dependent upon leaf P and Cl concentration. Plants died when Cl and P in their leaves exceeded 800 and 600 mmol kg?1 dry wt, respectively (e.g., Clark 63 grown at mf of Cl=1). The necrotic leaves were beige in color. Leaves that contained P in excess of 600 mmol kg?1 dry wt and Cl between 150–200 mmol kg?1 dry wt, were severely injured and reddish-brown in color (e.g., Clark 63 at mf of Cl=1/4 and Lee 74 Pi grown at mf of Cl=1). When leaf Cl was below 150 mmol kg?1 dry wt, development of reddish-brown coloration in the leaves was sporadic. The adverse salinity×Pi interaction observed on these soybean variaties, therefore, was caused by a synergistic interaction between P and Cl in the leaves.  相似文献   

8.
Red kidney bean (Phaseolus vulgaris L.) plants were grown in nutrient solution and in nutrient solution plus four bars of added NaCl. Chlorophyll and protein decay occurred much more rapidly in intact leaves from plants subjected to four bars of added NaCl in the growth medium than in intact leaves from plants without added NaCl. Ribonucleic acid (RNA) content in intact leaves of salt treated plants was higher than in intact leaves from plants grown in nutrient solution alone. However, the tendency for RNA content variation in leaves during the experimental period was the same for both control and salt treated plants. The results support the idea that salinity enhances senescence and suggests that hormone imbalance plays an important role in this process.  相似文献   

9.
We investigated effect of silicon (Si) on the growth, uptake of sodium (Na), chloride (Cl), boron (B), stomatal resistance (SR), lipid peroxidation (MDA), membrane permeability (MP), lipoxygenase (LOX) activity, proline (PRO) accumulation, H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activities of major antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT and ascorbate peroxidase, APX) of spinach and tomato grown in sodic-B toxic soil. Si applied to the sodic-B toxic soil at 2.5 and 5.0 mM concentrations significantly increased the Si concentration in the plant species and counteracted the deleterious effects of high concentrations of Na, Cl and B on root and shoot growth by lowering the accumulation of these elements in the plants. Stomatal resistance, MP, MDA and the concentrations of H2O2 and PRO were higher in the plants grown in sodic-B toxic soil without Si: LOX activity of excised leaves of both species was increased by Si. Antioxidant activities of both species were significantly affected by Si, with the activities of SOD, CAT and APX decreased and AA increased by applied Si. For most of the parameters measured, it was found that 5 mM Si was more effective than the 2.5 mM Si. Based on the present work, it can be concluded that Si alleviates sodicity and B toxicity of the plants grown in sodic-B toxic soil by preventing both oxidative membrane damage and also translocation of Na, Cl and B from root to shoots and/or soil to plant, and lowering the phytotoxic effects of Na, Cl and B within plant tissues. It was concluded that tomato was more responsive to Si than spinach since it was more salt sensitive than spinach. To our knowledge, this is the first report that Si improves the combined salt and B tolerance of spinach and tomato grown in naturally sodic-B toxic soil, and which describes membrane-related parameters and antioxidant responses.  相似文献   

10.
Silberbush  M.  Ben-Asher  J. 《Plant and Soil》2001,233(1):59-69
Soilless plant growth systems are widely used as a means to save irrigation water and to reduce groundwater contamination. While nutrient concentrations in the growth medium are depleted due to uptake by the plants, salinity and toxic substances accumulate due to transpiration. A theoretical model is suggested, to simulate nutrient uptake by plants grown in soilless cultures with recycled solutions. The model accounts for salinity accumulation with time and plant growth, and its effects on uptake of the different nutrients by means of interaction with Na and Cl ions. The sink term occurs due to uptake by a growing root system. Influx as a function of the ion concentration is according to Michaelis–Menten active mechanisms for K+, NO3 -N, NH4 +-N, PO4-P, Ca2+, Mg2+ and SO4 2-, whose influx parameters are affected by Na and Cl, but not with time (age). Sodium influx is passive above a critical concentration. Sum of cations–anions concentrations is balanced by Cl to maintain electro-neutrality of the growth solution. Salinity (by means of Na concentration) suppresses root and leaf growth, which further effect uptake and transpiration. The model accounts for instantaneous transpiration losses, during daytime only and its effect on uptake of nutrients and plant development due to salt accumulation. The model was tested against NO3 and K+ uptake by plants associated with cumulative transpiration and with different NaCl salinity levels. Deviations from observed K+ uptake should be attributed to the salinity tolerance of the plants. In a study with data obtained from published literature, the model indicated that nutrient depletion and salinity buildup might be completely different with fully grown-up plants (that do not grow) and plants that grow with time. Depletion of different nutrients are according to their initial concentration and plant uptake rate, but also affected by their interactions with Na and Cl ions.  相似文献   

11.
The composition and concentration of salts secreted by the salt glands of Tamarix aphylla L. grown under controlled nutrient conditions were determined. Eight ions, Na, K, Mg, Ca, Cl, NO3, HCO3, and SO4, constituted 99 % + of the dry weight of salts secreted by plants grown on half-strength Hoagland's solution. The divalent cations Mg and Ca accounted for most of the cations; HCO3 comprised about 60 % of the anions. The micronutrients B, Mn, Cu, Zn, and Mo were present in enriched concentrations in the secretion. The composition of the secretions was highly dependent on the composition of the root environment. The predominating cation in the saline culture solutions was also the predominant cation secreted. The accompanying anion in the culture solution influences the cation composition of the secreted salt. The concentration of the salt gland secretion averaged 0.5n , a 50-fold increase in concentration over the nutrient solution in which the plants were grown.  相似文献   

12.
Under salinity stress, plants commonly accumulate carbohydrates for osmotic adjustment to balance the excess accumulated ions and to protect biomolecules. We selected two cowpea cultivars with contrasting response to salinity, Pitiúba (salt-tolerant) and TVu (salt-sensitive), to investigate whether the salt tolerance could be associated with changes in carbohydrate accumulation and metabolism in leaves and roots during a long-term experiment. Two salt treatments (0 and 75 mM NaCl) were applied to 10-day-old plants grown in nutrient solution for 24 days. Despite some changes in carbohydrate accumulation and carbohydrate metabolism enzymes induced by salt stress, no consistent alterations in carbohydrates could be found in leaves or roots in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in cowpea.  相似文献   

13.
Silicon improves salinity tolerance in wheat plants   总被引:5,自引:0,他引:5  
Durum wheat (Triticum durum cv. Gediz-75) and bread wheat (Triticum aestivum cv. Izmir-85) were grown in a complete nutrient solution in a growth room to investigate effect of silicone supplied to the nutrient solution on plants grown at salt stress. The experiment was a 2 × 2 factorial arrangement with two levels of NaCl in nutrient solution, 0 and 100 mM, and two levels of silicone (Si) in nutrient solution, 0.25 and 0.50 mM, as Na2SiO3. The plants grown at 100 mM NaCl produced less dry matter and chlorophyll content than those without NaCl. Supplementary Si at both 0.25 and 0.5 mM ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Membrane permeability and proline content in leaves increased with addition of 100 mM NaCl and these increases were decreased with Si treatments. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants in the high NaCl treatment and Si treatments lowered significantly the concentrations of Na in both leaves and roots. Bread wheat was more tolerant to salinity than durum wheat. The accumulation of Na in roots indicates a possible mechanism whereby bread wheat copes with salinity in the rooting medium and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of both Ca and K were lower in the plants grown at high NaCl than in those in the control treatment and these two element concentrations were increased by Si treatments in both shoots and roots but remained lower than control values in most cases.  相似文献   

14.
A factorial culture experiment was designed to investigate the influence of light regimes and of some metal chelators on the accumulation of cadmium by Lemna gibba L. The plants were grown in a complete nutrient solution containing Cd2+ concentrations ranging from 0 to 27 μ M with or without EDTA, ethylenediamine-N,N'- bis -( o -hydroxyphenylacetic acid) (EDDHA) or salicylic acid. Each experiment was run for eight days in 18 h:6 h light:dark or continuous light. An increase in the Cd2+ concentration in plants and a simultaneous drop in accumulation efficiency (ratio of Cd2+ concentration in plants to the initial Cd2+ concentration in the nutrient solution) with increasing ambient Cd2+ levels was best represented by regression power curves. At the lowest Cd2+ concentration which caused a significant decrease in the relative growth rate of duckweed, there was a decrease in manganese and zinc and an increase in the iron level in the plants. EDDHA and EDTA protected in some cases against the toxic action of cadmium without preventing its uptake by plants. It was thus observed that 9 μ M or higher levels of Cd2+ were toxic to Lemna gibba depending on the chelator and light regime. Duckweed grown in continuous light produced, in general, more dry matter and hence accumulated more cadmium.  相似文献   

15.
W. Fueda  E. Hirasawa 《Plant and Soil》1994,164(2):261-266
Determination and distribution of radioactive chloride in Pharbitis nil was investigated by a bio-imaging analyzer. When leaves that contained various amounts of 36Cl were analyzed with the imaging analyzer and then each sample was homogenized and its radioactivity measured in a liquid scintillation counter, radioactive levels recorded by the analyzer were directly proportional to the radioactivity determined by the counter. When plants that had been grown in full nutrient solution were incubated in [36Cl]-containing solution, more activity was found in young leaves than in mature leaves, while little radioactivity was detected in shrivelled leaves and the nonsymptomatic cusp of young leaves of plants that had been grown in chlorine-deficient solution.  相似文献   

16.
The effect of prolonged phosphate starvation of bean plants (Phaseolus vulgaris L.) on the concentration of phenolics and their exudation by roots was studied. Plants cultured on phosphate-deficient media maintained a steady concentration of total phenolics in the leaves, whereas in the leaves of plants grown on complete nutrient media the phenolic concentration decreased. After 18 days of culture, higher total phenolics and anthocyanin concentrations in phosphate-deficient leaves compared with control leaves were observed. The divergent trends in total phenolic concentrations between phosphate-deficient and control leaves corresponded to the changes in the activity of L-phenylalanine ammonia-lyase. In the roots, the concentration of total phenolics was lower in phosphate-deficient plants compared with control plants. However, after 18 days of culture of bean plants, the amount of exuded phenolics from phosphate-deficient roots was 5-times higher than that from the roots of control plants. The activity of L-phenylalanine ammonia-lyase was twice as high in the roots of phosphate-starved plants. Comparable rates in the exudation of phenolics by bean roots observed after 18 days of culture on nitrogen-deficient or phosphate-deficient medium may suggest a similar system of signal transduction for phenolics release. The results are discussed in relation to the possible functions of phenolics in nutrient uptake and as chemical signals in root-soil microbe interactions to enhance the plant adaptation to particular environmental conditions.  相似文献   

17.
Potted grapevines of 140 Ruggeri (Vitis berlandieri × Vitis rupestris), a good Cl(-) excluder, and K 51-40 (Vitis champinii × Vitis riparia 'Gloire'), a poor Cl(-) excluder, and of a family obtained by crossing the two genotypes, were used to examine the inheritance of Cl(-) exclusion. Rooted leaves were then used to further investigate the mechanism for Cl(-) exclusion in 140 Ruggeri. In both a potting mix trial (plants watered with 50 mM Cl(-)) and a solution culture trial (plants grown in 25 mM Cl(-)), the variation in Cl(-) accumulation was continuous, indicating multiple rather than single gene control for Cl(-) exclusion between hybrids within the family. Upper limits of 42% and 35% of the phenotypic variation in Cl(-) concentration could be attributed to heritable sources in the potting mix and solution culture trials, respectively. Chloride transport in roots of rooted leaves of both genotypes appeared to be via the symplastic pathway, since addition of 8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS), an apoplastic tracer, revealed no obvious PTS fluorescence in the laminae of either genotype, despite significant accumulation of Cl(-) in laminae of K 51-40 during the PTS uptake period. There was no significant difference in either unidirectional (36)Cl(-) flux (10 min) or (36)Cl(-) uptake (3 h) into roots of rooted leaves exposed to 5, 10, or 25 mM Cl(-). However, the percentage of (36)Cl(-) transported to the lamina (3 h) was significantly lower in 140 Ruggeri than in K 51-40, supporting reduced Cl(-) loading into xylem and implicating the root stele in the Cl(-) exclusion mechanism.  相似文献   

18.
Root pruning increased the level of ethanol soluble sugars inred kidney bean plants (Phaseolus vulgaris L. ) grown in aeratednutrient solution. However, the concentration gradient of thesesugars down the stem and its translocation velocity remainedunchanged. Removal of 50% of the roots had no effect on thetotal photosynthates exported from source leaves but the finaldistribution pattern of photosynthates was altered; less movingtoward the upper plant parts, and accumulation occurring inthe lower stems. Translocation velocity of photosynthates towardthe upper plant parts was drastically reduced by root pruning. Key words: Phaseolus vulgaris, Photosynthate translocation, Root pruning  相似文献   

19.
The role of salicylic acid (SA) in alleviating cadmium (Cd) toxicity was investigated in a hydroponic cultivation system. Short-term exposure of bean (Phaseolus vulgaris) plants to 20 μM Cd inhibited biomass production and intensively increased accumulation of Cd in both roots and leaves. At leaf level, Cd significantly decreased mineral ions, chlorophyll and carotenoids concentrations. Concomitantly, Cd enhanced electrolyte leakage, H2O2 content and lipid peroxidation as indicated by malondialdehyde (MDA) accumulation. SA pretreatment decreased the uptake and the transport of Cd, alleviated the Cd-induced inhibition of nutrient absorption and led to a significant increase of chlorophyll and carotenoid content. SA application alleviated the oxidative damages as evidenced by the lowered H2O2 and MDA content. SA particularly induced an increase in both CAT and APX activities accompanied by a significant reduction in SOD and POD activities. As important antioxidants, ascorbate and glutathione contents in bean leaves exposed to cadmium were significantly decreased by SA treatment. These results reveal the potentiating effect of salicylic acid in regulating cadmium induced oxidative stress in bean plants.  相似文献   

20.
Zinc accumulation in spinach (Spinacea oleracea L. cv. Verbeterd Breedblad), especially in the leaves, has been studied in plants grown on nutrient solutions. The extent of accumulation depends on, but is not proportional to the external zinc supply. Zinc uptake by water flow does not account for the concentrations observed in the various plant parts. The relative accumulation rate is related to the relative growth rate, but depends also on leaf position and leaf age. The data suggest that the midribs act as sinks for the nutrient solution, whilst the leaf blades in turn act as sinks for the midribs. We suggest that strong binding of zinc occurs to specific organic compounds in the cell, thus, diminishing the concentration of the free zinc ions in the biological tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号