首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be less reactogenic than traditional vaccines, but are also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated into two classes, based on their principal mechanisms of action; vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, iscoms and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC). In contrast, immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns (PAMP) e.g. LPS, MPL, CpG DNA, which activate cells of the innate immune system. Once activated, cells of innate immunity drive and focus the acquired immune response. In some studies, delivery systems and immunostimulatory agents have been combined to prepare adjuvant delivery systems, which are designed for more effective delivery of the immunostimulatory adjuvant into APC. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants may enhance this process. However, a rational approach to the development of new and more effective vaccine adjuvants will require much further work to better define the mechanisms of action of existing adjuvants. The discovery of more potent adjuvants may allow the development of vaccines against infectious agents such as HIV which do not naturally elicit protective immunity. New adjuvants may also allow vaccines to be delivered mucosally.  相似文献   

2.
Malaria is a vector-borne infectious disease caused by infection with eukaryotic pathogens termed Plasmodium. Epidemiological hallmarks of Plasmodium falciparum malaria are continuous re-infections, over which time the human host may experience several clinical malaria episodes, slow acquisition of partial protection against infection, and its partial decay upon migration away from endemic regions. To overcome the exposure-dependence of naturally acquired immunity and rapidly elicit robust long-term protection are ultimate goals of malaria vaccine development. However, cellular and molecular correlates of naturally acquired immunity against either parasite infection or malarial disease remain elusive. Sero-epidemiological studies consistently suggest that acquired immunity is primarily directed against the asexual blood stages. Here, we review available data on the relationship between immune responses against the Anopheles mosquito-transmitted sporozoite and exo-erythrocytic liver stages and the incidence of malaria. We discuss current limitations and research opportunities, including the identification of additional sporozoite antigens and the use of systematic immune profiling and functional studies in longitudinal cohorts to look for pre-erythrocytic signatures of naturally acquired immunity.  相似文献   

3.
Prophylaxis of infectious diseases transferred by ticks is an important problem of contemporary medicine. One of the perspective approaches to solve this problem is the creation of vaccines against tickbite (anti-tickvaccines). Contemporary methods of the control of infectious diseases transferred by ticks are described in the review. Features of naturally and artificially acquired immunity against ticks are examined. Candidate tick antigens for the construction of vaccines against genus Ixodes tick bite are described. Perspectives of use of anti-tick vaccines against tick vector borne diseases are evaluated.  相似文献   

4.

Background

Burkholderia pseudomallei is a Category B select agent and the cause of melioidosis. Research funding for vaccine development has largely considered protection within the biothreat context, but the resulting vaccines could be applicable to populations who are at risk of naturally acquired melioidosis. Here, we discuss target populations for vaccination, consider the cost-benefit of different vaccination strategies and review potential vaccine candidates.

Methods and Findings

Melioidosis is highly endemic in Thailand and northern Australia, where a biodefense vaccine might be adopted for public health purposes. A cost-effectiveness analysis model was developed, which showed that a vaccine could be a cost-effective intervention in Thailand, particularly if used in high-risk populations such as diabetics. Cost-effectiveness was observed in a model in which only partial immunity was assumed. The review systematically summarized all melioidosis vaccine candidates and studies in animal models that had evaluated their protectiveness. Possible candidates included live attenuated, whole cell killed, sub-unit, plasmid DNA and dendritic cell vaccines. Live attenuated vaccines were not considered favorably because of possible reversion to virulence and hypothetical risk of latent infection, while the other candidates need further development and evaluation. Melioidosis is acquired by skin inoculation, inhalation and ingestion, but routes of animal inoculation in most published studies to date do not reflect all of this. We found a lack of studies using diabetic models, which will be central to any evaluation of a melioidosis vaccine for natural infection since diabetes is the most important risk factor.

Conclusion

Vaccines could represent one strand of a public health initiative to reduce the global incidence of melioidosis.  相似文献   

5.
Brown GV 《Parassitologia》1999,41(1-3):429-432
Major technical advances in the field of vaccine development have culminated in an impressive array of prototype vaccines that may well provide 'proof of principle' that vaccines against all life-cycle stages may induce a degree of protection against malaria. As the mechanisms responsible for protection against this disease are not known, and vaccines for populations at greatest risk will be applied in the presence of ongoing infection and a degree of concomitant immunity, it is essential for us to learn from the 'experiments of nature' about acquired and ongoing immunity in order to determine when and how these vaccines may be applied. Successful interventions with chemoprophylaxis or vector control have provided obvious lessons and highlight the importance of recognising the lack of correlation between infection, clinical disease and mortality. Vaccines inducing sterile immunity raise concerns about rebound mortality in populations who will undoubtedly be re-challenged later in life, hence the need to review supplementary or alternative strategies for reducing disease through immune responses to toxins or molecules inducing pathology by adherence to host endothelium. Following antigen selection there are many challenges in choosing methods of antigen delivery and adjuvants, and measuring vaccine efficacy. A successful vaccine would need to be delivered through a national programme in the context of implementation of a wide range of components required for an effective control strategy.  相似文献   

6.
The first experimental vaccination against ticks was carried out 60 years ago. Since then, progress has been slow, although the recent commercial release of a recombinant vaccine against Boophilus microplus is significant. The nature of naturally acquired protective immunity against ticks is poorly understood, particularly in the important, domesticated ruminant hosts. Characterization of the antigens of naturally acquired immunity remains limited, although more has been achieved with 'concealed' antigens. Crucial questions remain about the true impact of tick-induced immunosuppression and the effect of immunity on the transmission of tick-borne diseases, despite some fascinating and important recent results, as discussed here by Peter Willadsen and Frans Jongejan.  相似文献   

7.
Experimental malaria vaccines based on two sporozoite stage candidate antigens of Plasmodium falciparum, the circumsporozoite protein (CSP) and thrombospondin-related adhesive protein (TRAP), have undergone clinical trials of efficacy. The relevance of naturally existing polymorphism in these molecules remains unknown. Sequence polymorphism in the genes encoding these antigens was studied in a Gambian population (sample of 48 trap and 44 csp gene sequences) to test for signatures of selection that would result from naturally acquired immunity. Allele frequency distributions were analyzed and compared with data from another population (in Thailand). Patterns of non-synonymous and synonymous polymorphism in P. falciparum and in Plasmodium vivax were compared with divergence from related species. Results indicate that polymorphism in TRAP is under strong selection for amino acid sequence diversity and that allele frequencies are under balancing selection within the Gambian P. falciparum population. There was no such evidence for CSP, calling into question the idea that most polymorphisms in this gene are under immune selection. There was a weak trend for regions known to encode T cell epitopes to have slightly higher indices suggesting balancing selection. Overall, the results predict more allele-specific immunity to TRAP than to CSP and should be considered in design and efficacy testing of vaccine candidates based on these antigens.  相似文献   

8.
Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components – a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists.  相似文献   

9.
Malaria vaccine development has so far been largely focused on antigens involved in parasite invasion pathways rather than on antigens associated with severe disease and naturally acquired immunity. Individuals repeatedly exposed to Plasmodium falciparum will eventually become immune to severe disease. Parasite-derived antigens expressed on the infected red blood cell (iRBC) surface are the main targets of protective immunity and can be explored as a rational alternative in development of an anti-malaria vaccine.  相似文献   

10.
The search for a cytotoxic T lymphocyte (CTL)-inducing malaria vaccine has moved forward from epitope identification to planning stages of safety and immunogenicity trials of candidate vaccines. Development of CTL-inducing vaccine candidates has taken center stage based on the observation that CTL-mediated protection might be the dominant mechanism by which sterile immunity is achieved in irradiated sporozoite immunization experiments in humans and laboratory animals. However, studies in naturally infected individuals living in endemic areas, as reviewed here by Michael Aidoo and Venkatachalam Udhayakumar, have revealed that CTL induction might be influenced by factors such as parasite variants, host genes, other infections and transmission patterns. The influence of these factors on CTL induction has been demonstrated individually and in various combinations in controlled animal experiments. However, in naturally infected humans, they are presented in a complex host-parasite-environment interaction, in a manner that is not easily achieved in laboratory-based experiments. Understanding these interactions is crucial for the development and testing of CTL-inducing vaccines for humans.  相似文献   

11.
Most protein antigens identified as malaria vaccine candidates are polymorphic in natural parasite populations. Current opinion is that a vaccine must be based on conserved regions of antigens, and if naturally acquired immune responses to these regions are only partially protective in humans, then the vaccine must create what is lacking in Nature. An alternative view is that a successful vaccine might need to be based on multiple allelic forms of an antigen. David Conway here shows that, far from being too pessimistic or impractical, this view offers positive ways to identify targets of protective immunity.  相似文献   

12.
Influenza virus infection and the resulting complications are a significant global public health problem. Improving humoral immunity to influenza is the target of current conventional influenza vaccines, however, these are generally not cross-protective. On the contrary, cell-mediated immunity generated by primary influenza infection provides substantial protection against serologically distinct viruses due to recognition of cross-reactive T cell epitopes, often from internal viral proteins conserved between viral subtypes. Efforts are underway to develop a universal flu vaccine that would stimulate both the humoral and cellular immune responses leading to long-lived memory. Such a universal vaccine should target conserved influenza virus antibody and T cell epitopes that do not vary from strain to strain. In the last decade, immunoproteomics, or the direct identification of HLA class I presented epitopes, has emerged as an alternative to the motif prediction method for the identification of T cell epitopes. In this study, we used this method to uncover several cross-specific MHC class I specific T cell epitopes naturally presented by influenza A-infected cells. These conserved T cell epitopes, when combined with a cross-reactive antibody epitope from the ectodomain of influenza M2, generate cross-strain specific cell mediated and humoral immunity. Overall, we have demonstrated that conserved epitope-specific CTLs could recognize multiple influenza strain infected target cells and, when combined with a universal antibody epitope, could generate virus specific humoral and T cell responses, a step toward a universal vaccine concept. These epitopes also have potential as new tools to characterize T cell immunity in influenza infection, and may serve as part of a universal vaccine candidate complementary to current vaccines.  相似文献   

13.
Vaccines to prevent acute otitis media (AOM) caused by non-typeable Haemophilus influenzae (NTHi) are under development. Because NTHi is highly variable and colonization rates are high, special vaccine characteristics and trial designs might be needed. We examined in mathematical models the equilibrium NTHi-caused AOM rate given hypothetical vaccines that generated immunity identical to corresponding maximal naturally acquired immunity. Vaccines were examined with single effects and combinations of immunity affecting (1) AOM rates given colonization (pathogenicity), (2) susceptibility to colonization, and (3) contagiousness given colonization. Percent reductions in AOM across all preschool children were (1) 34%, (2) 31%, (3) 9%, (1 and 2) 57%, (2 and 3) 50%, and (1, 2, and 3) 75%. Effects on children in daycare vs. not in daycare were (1) 18 vs. 48%, (2) -1 vs. 57%, (3) 13 vs. 5%, (1 and 2) 30 vs. 79%, (2 and 3) 33 vs. 60%, and (1, 2, and 3) 64 vs. 85%. Pure pathogenicity effects (1 alone) will need to be supplemented by transmission effects. The effects of susceptibility (2 alone) are diminished or negative because children protected against colonization have lower levels of immunity to (1) and (3) than unvaccinated children. For trials to predict population effects, both colonization and AOM outcomes must be studied and all three effects must be evaluated. This need arises because, unlike H. influenzae type B, high NTHi exposure diminishes cumulative vaccine effects and high colonization rates generate rapid accumulation of natural immunity that alters the indirect effects of vaccine immunity on transmission differently by age and daycare status.  相似文献   

14.
研制能同时诱导有效黏膜免疫和系统免疫的疫苗是预防黏膜感染病原体的理想目标。消化道具有许多产生黏膜免疫的位点,包括口腔、胃和小肠等。理想的口服病毒疫苗不仅能诱导较好的局部及远端黏膜免疫,也能产生较好的系统免疫,而且还因为具有无痛接种、可自行服用等优势而备受关注。由于人消化道环境及黏膜免疫的复杂性,目前成功上市的人口服病毒疫苗仅限于3种减毒活疫苗。本文将从消化道黏膜免疫的特点、当前口服病毒疫苗种类及研究现状、口服病毒疫苗所面临的挑战等方面进行综述,期望对我国人口服病毒疫苗的研究和开发提供参考和借鉴。  相似文献   

15.
结核病是一种棘手的重大传染病.虽然存在一些有一定疗效的治疗药物,亦有预防性疫苗--卡介苗(BCG);但结核病仍在世界范围流行,且发病率和病死率居高不下.结核病的免疫病理机制及疫苗研究近年来取得了一定的进展.结核分枝杆菌通过Toll样受体(TLR)等模式识别受体,激活巨噬细胞的天然免疫反应,清除细菌和调节获得性免疫反应....  相似文献   

16.
Vaccination is a powerful tool in combating infectious diseases of humans and companion animals. In most wildlife, including reservoirs of emerging human diseases, achieving sufficient vaccine coverage to mitigate disease burdens remains logistically unattainable. Virally vectored “transmissible” vaccines that deliberately spread among hosts are a potentially transformative, but still theoretical, solution to the challenge of immunising inaccessible wildlife. Progress towards real-world application is frustrated by the absence of frameworks to guide vector selection and vaccine deployment prior to major in vitro and in vivo investments in vaccine engineering and testing. Here, we performed deep sequencing on field-collected samples of Desmodus rotundus betaherpesvirus (DrBHV), a candidate vector for a transmissible vaccine targeting vampire bat–transmitted rabies. We discovered 11 strains of DrBHV that varied in prevalence and geographic distribution across Peru. The phylogeographic structure of DrBHV strains was predictable from both host genetics and landscape topology, informing long-term DrBHV-vectored vaccine deployment strategies and identifying geographic areas for field trials where vaccine spread would be naturally contained. Multistrain infections were observed in 79% of infected bats. Resampling of marked individuals over 4 years showed within-host persistence kinetics characteristic of latency and reactivation, properties that might boost individual immunity and lead to sporadic vaccine transmission over the lifetime of the host. Further, strain acquisitions by already infected individuals implied that preexisting immunity and strain competition are unlikely to inhibit vaccine spread. Our results support the development of a transmissible vaccine targeting a major source of human and animal rabies in Latin America and show how genomics can enlighten vector selection and deployment strategies for transmissible vaccines.

Deep sequencing of vampire bat betaherpesviruses reveals prevalent multi-strain, multi-year infections with predictable patterns of spread and no evidence of cross immunity, supporting the herpesvirus as a promising transmissible vaccine candidate for bat rabies.  相似文献   

17.
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.  相似文献   

18.
Understanding fundamental mechanisms of vaccine immunity will allow proper use and optimization of vaccines. Vaccination with a genetically engineered, live, attenuated strain of Blastomyces dermatitidis carrying a targeted deletion at the BAD1 locus confers sterilizing immunity against experimental lethal pulmonary infection. We found in this study that alphabeta T cells are requisite for durable vaccine immunity, whereas other T and B cells are dispensable. In immune-competent animals, CD4(+) T-cell derived cytokines TNF-alpha and IFN-gamma mediate vaccine immunity. Surprisingly, these factors are dispensable in immune-deficient animals, which rely on alternate mechanisms for robust vaccine immunity, yet still require O(2)(-) production rather than generation of NO. Our results clarify the cellular and molecular bases behind the first genetically engineered fungal vaccine. They also illustrate a sharp difference in vaccine mechanisms between immune-competent and immune-deficient hosts, which underscores the plasticity of residual immune elements in compromised hosts, and points to the feasibility of developing vaccines against invasive fungal infection in this fast growing patient population.  相似文献   

19.
Results of the conducted study showed that naturally acquired antibacterial and postvaccinal antitoxic antibodies against diphtheria were found in human blood sera. Challenge of ADT-M toxoid to adults resulted in production of antitoxic as well as antibacterial antibodies in high concentrations. In response to challenge of ADT-M toxoid simultaneously with bacterial vaccine against diphtheria Codivac both antibacterial and antitoxic antibodies were synthesized in blood on optimal physiologic levels. This study revealed dynamics of some specific characteristics of humoral immune response after challenge of two different vaccines against diphtheria--ADT-M toxoid and Codivac vaccine.  相似文献   

20.
Numerous human immunodeficiency virus (HIV)-1 vaccines have been developed over the last three decades, but to date an effective HIV-1 vaccine that can be used for prophylactic or therapeutic purposes in humans has not been identified. The failures and limited successes of HIV-1 vaccines have highlighted the gaps in our knowledge with regard to fundamental immunity against HIV-1 and have provided insights for vaccine strategies that may be implemented for designing more effective HIV-1 vaccines in the future. Recent studies have shown that robust mucosal immunity, high avidity and polyfunctional T cells, and broadly neutralizing antibodies are important factors governing the induction of protective immunity against HIV-1. Furthermore, optimization of vaccine delivery methods for DNA or live viral vector-based vaccines, elucidating the immune responses of individuals who remain resistant to HIV-1 infections and also understanding the core immune responses mediating protection against simian immunodeficiency viruses (SIV) and HIV-1 in animal models following vaccination, are key aspects to be regarded for designing more effective HIV-1 vaccines in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号