首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal ischemia-reperfusion has been implicated in the systemic inflammatory response and organ injury in hemorrhagic shock, but the exact role of the intestine has never been directly demonstrated. Preconditioning (PC) with brief periods of intermittent ischemia is a known potent anti-ischemic intervention and thus can be used as a tool to assess the role of local intestinal ischemia-reperfusion injury in systemic inflammatory response. Thus rats were first subjected to sham surgery or intestinal preconditioning with four cycles of 1-min ischemia and 10 min of reperfusion 24 h before hemorrhagic shock followed by resuscitation. PC reduced fluid requirements, lung edema, and lactate and tumor necrosis factor-alpha production. These effects were abolished by the heme-oxygenase-1 (HO-1) inhibitor tin protoporphyrin (Sn-PP). PC induced more than fivefold in intestinal HO-1 expression. These results suggest that intestinal ischemia-reperfusion is a major trigger for inflammatory response and organ injury in nonseptic shock. HO-1 appears to play an important role in the protective effect of intestinal preconditioning.  相似文献   

2.

Background

Systemic inflammatory response syndrome is a fatal disease because of multiple organ failure. Acute kidney injury is a serious complication of systemic inflammatory response syndrome and its genesis is still unclear posing a difficulty for an effective treatment. Aldose reductase (AR) inhibitor is recently found to suppress lipopolysaccharide (LPS)-induced cardiac failure and its lethality. We studied the effects of AR inhibitor on LPS-induced acute kidney injury and its mechanism.

Methods

Mice were injected with LPS and the effects of AR inhibitor (Fidarestat 32 mg/kg) before or after LPS injection were examined for the mortality, severity of renal failure and kidney pathology. Serum concentrations of cytokines (interleukin-1β, interleukin-6, monocyte chemotactic protein-1 and tumor necrosis factor-α) and their mRNA expressions in the lung, liver, spleen and kidney were measured. We also evaluated polyol metabolites in the kidney.

Results

Mortality rate within 72 hours was significantly less in LPS-injected mice treated with AR inhibitor both before (29%) and after LPS injection (40%) than untreated mice (90%). LPS-injected mice showed marked increases in blood urea nitrogen, creatinine and cytokines, and AR inhibitor treatment suppressed the changes. LPS-induced acute kidney injury was associated with vacuolar degeneration and apoptosis of renal tubular cells as well as infiltration of neutrophils and macrophages. With improvement of such pathological findings, AR inhibitor treatment suppressed the elevation of cytokine mRNA levels in multiple organs and renal sorbitol accumulation.

Conclusion

AR inhibitor treatment ameliorated LPS-induced acute kidney injury, resulting in the lowered mortality.  相似文献   

3.
Gut injury is a pivotal initiating event in the dysfunctional inflammatory response that causes postinjury multiple organ failure. Heme oxygenase-1 (HO-1) is an important enzyme that provides cellular protection against oxidative stress in different in vitro and in vivo systems. In this study, we evaluated the protective effects of intragastrically administered live Lactococcus lactis secreting bioactive HO-1 to treat intestinal mucosal injury induced by lipopolysaccharide in rats. Intragastric administration with this recombinant L. lactis strain led to active delivery of HO-1 at the mucosa and significantly decreased morbidity and mortality of lipopolysaccharide -induced endotoxemia as confirmed by blinded macroscopic and microscopic inflammatory scores (Chiu's grade), myeloperoxidase activity, mortality, and tumor necrosis factor-alpha and IL-10 cytokine stimulation. This protective effect could be abolished by an HO-1 inhibitor, the zinc protoporphyrin-IX. Our results suggest that a food-grade bacterium genetically modified to deliver bioactive HO-1 in situ exerts a protective effect against intestinal mucosal injury in rats with endotoxemia via modulation of the immune system. This novel approach may be beneficial for the maintenance of the intestinal barrier and anti-inflammatory response of the lower intestine.  相似文献   

4.
Given the high morbidity and mortality rates associated with pulmonary inflammation in sepsis, there is a pressing need for new therapeutic modalities to prevent acute respiratory distress. The enzyme heme oxygenase-1 (HO-1) provides potent cytoprotection against lung injury; however, the mechanism by which it does so is unclear. HO-1 catabolizes heme into biliverdin (BV), which is rapidly converted to bilirubin by BV reductase. We tested the hypothesis that BV administration could substitute for the effects observed with HO-1. Using the well-described rat model of LPS-induced shock, we demonstrate that exposure to BV imparts a potent defense against lethal endotoxemia systemically, as well as in the lungs, and effectively abrogates the inflammatory response. BV administration before a lethal dose of LPS leads to a significant improvement in long-term survival: 87% vs. 20% in sham-treated controls. BV treatment suppressed LPS-induced increases in lung permeability and lung alveolitis and significantly reduced serum levels of the LPS-induced proinflammatory cytokine IL-6. Moreover, bilirubin administered just after LPS also abrogated lung inflammation. BV treatment also augmented expression of the anti-inflammatory cytokine IL-10. Similar effects on production were observed with BV treatment in vitro in mouse lung endothelial cells and RAW 264.7 macrophages treated with LPS. In conclusion, these data demonstrate that BV can modulate the inflammatory response and suppress pathophysiological changes in the lung and may therefore have therapeutic application in inflammatory disease states of the lung.  相似文献   

5.
Intestinal ischemia–reperfusion (I/R) is a serious clinical dilemma with high morbidity and mortality. Remote organ damage, especially acute lung injury and liver injury are common complications that contribute to the high mortality rate. We previously demonstrated that activation of PKCβII is specifically involved in the primary injury of intestinal I/R. Considering the tissue-specific features of PKC activation, we hypothesized that some kind of PKC isoform may play important roles in the progression of secondary injury in the remote organ. Mice were studied in in vivo model of intestinal I/R. The activation of PKC isoforms were screened in the lung and liver. Interestingly, we found that PKCβII was also activated exclusively in the lung and liver after intestinal I/R. PKCβII suppression by a specific inhibitor, LY333531, significantly attenuated I/R-induced histologic damage, inflammatory cell infiltration, oxidative stress, and apoptosis in these organs, and also alleviated systemic inflammation. In addition, LY333531 markedly restrained p66shc activation, mitochondrial translocation, and binding to cytochrome-c. These resulted in the decrease of cytochrome-c release and caspase-3 cleavage, and an increase in glutathione and glutathione peroxidase. These data indicated that activated PKC isoform in the remote organ, specifically PKCβII, is the same as that in the intestine after intestinal I/R. PKCβII suppression protects against remote organ injury, which may be partially attributed to the p66shc-cytochrome-c axis. Combined with our previous study, the development of a specific inhibitor for prophylaxis against intestinal I/R is promising, to prevent multiple organ injury.  相似文献   

6.
7.
8.
An increasing number of studies implicate heme oxygenase-1 (HO-1) in the regulation of inflammation. Although the mechanisms involved in this cytoprotection are largely unknown, HO-1 and its enzymatic products, carbon monoxide and bilirubin, downregulate the inflammatory response by either attenuating the expression of adhesion molecules and thus inhibiting leukocyte recruitment or by repressing the induction of cytokines and chemokines. In the present study we used genetically engineered mice that express high levels of a human cDNA HO-1 transgene in lung epithelium to assess the effect of HO-1 on lung inflammation. Two separate models of inflammation were studied: hypoxic exposure and lipopolysaccharide (LPS) challenge. We found that both mRNA and protein levels of specific cytokines and chemokines were significantly elevated in response to hypoxia in the lungs of wild-type mice after 2 and 5 days of exposure but significantly suppressed in the hypoxic lungs of transgenic mice, suggesting that inhibition of these cytokines was caused by overexpression of HO-1. However, LPS treatment resulted in a very pronounced increase in mRNA levels of several cytokines in both wild-type and transgenic mice. Despite the high mRNA levels, significantly lower cytokine protein levels were detected in the bronchoalveolar lavage of HO-1 overexpressing mice compared with wild type, indicating that HO-1 leads to repression of cytokines in the airway. These results demonstrate that HO-1 activity operates through distinct molecular mechanisms to confer cytoprotection in the hypoxic and the LPS models of inflammation.  相似文献   

9.
Acute mesenteric ischemia (AMI) is a life-threatening condition that can result in multiple organ injury and death. A timely diagnosis and treatment would have a significant impact on the morbidity and mortality in high-risk patient population. The purpose of this study was to investigate if intestinal fatty acid binding protein (I-FABP) and α-defensins can be used as biomarkers for early AMI and resultant lung injury. C57BL/6 mice were subjected to intestinal ischemia by occlusion of the superior mesenteric artery. A time course of intestinal ischemia from 0.5 to 3 h was performed and followed by reperfusion for 2 h. Additional mice were treated with N-acetyl-cysteine (NAC) at 300 mg/kg given intraperitoneally prior to reperfusion. AMI resulted in severe intestinal injury characterized by neutrophil infiltrate, myeloperoxidase (MPO) levels, cytokine/chemokine levels, and tissue histopathology. Pathologic signs of ischemia were evident at 1 h, and by 3 h of ischemia, the full thickness of the intestine mucosa had areas of coagulative necrosis. It was noted that the levels of α-defensins in intestinal tissue peaked at 1 h and I-FABP in plasma peaked at 3 h after AMI. Intestinal ischemia also resulted in lung injury in a time-dependent manner. Pretreatment with NAC decreased the levels of intestinal α-defensins and plasma I-FABP, as well as lung MPO and cytokines. In summary, the concentrations of intestinal α-defensins and plasma I-FABP predicted intestinal ischemia prior to pathological evidence of ischemia and I-FABP directly correlated with resultant lung injury. The antioxidant NAC reduced intestinal and lung injury induced by AMI, suggesting a role for oxidants in the mechanism for distant organ injury. I-FABP and α-defensins are promising biomarkers, and may guide the treatment with antioxidant in early intestinal and distal organ injury.  相似文献   

10.
Resuscitated hemorrhagic shock is believed to promote the development of acute lung injury (ALI) by priming the immune system for an exaggerated inflammatory response to a second trivial stimulus. This work explored effects of TLR4 on hemorrhage-induced ALI and “second-hit” responses, and further explore the mechanisms involved in “second-hit” responses. Expression of HO-1, IL-10, lung W/D and MPO markedly increased at nearly all time-points examined in HSR/LPS group as compared with sham/LPS group in WT mice. In HSR/LPS mice, the induced amount of IL-10 and the expressions of HO-1 of WT mice were significantly higher compared with TLR-4d/d. This study provides in vivo evidence that pulmonary infections after LPS instillation contribute to local tissue release of pro-inflammatory mediators after HSR systemic. Activation of TLR4 might induce HO-1 expression and HO-1 modulates proinflammatory responses that are triggered via TLR4 signaling.  相似文献   

11.
12.
13.
The restoration of blood flow, i.e., reperfusion, is the treatment of choice to save viable tissue following acute ischemia of a vascular territory. Nevertheless, reperfusion can be accompanied by significant inflammatory events that limit the beneficial effects of blood flow restoration. To evaluate the potential role of the intestinal microbiota in facilitating the development of tissue injury and systemic inflammation, germ-free and conventional mice were compared in their ability to respond to ischemia and reperfusion injury. In conventional mice, there was marked local (intestine) and remote (lung) edema formation, neutrophil influx, hemorrhage, and production of TNF-alpha, KC, MIP-2, and MCP-1. Moreover, there was an increase in the concentration of serum TNF-alpha and 100% lethality. In germ-free mice, there was no local, remote, or systemic inflammatory response or lethality after intestinal ischemia and reperfusion and, in contrast to conventional mice, germ-free animals produced greater amounts of IL-10. Similar results were obtained after administration of LPS, i.e., little production of TNF-alpha or lethality and production of IL-10 after LPS in germ-free mice. Blockade of IL-10 with Abs induced marked inflammation and lethality in germ-free mice after ischemia and reperfusion or LPS administration, demonstrating that the ability of these mice to produce IL-10 was largely responsible for their "no inflammation" phenotype. This was consistent with the prevention of reperfusion-associated injury by the exogenous administration of IL-10 to conventional mice. Thus, the lack of intestinal microbiota is accompanied by a state of active IL-10-mediated inflammatory hyporesponsiveness.  相似文献   

14.
The purpose of this study was to determine whether medium-chain triglycerides (MCTs) modulate the inflammatory immune response to LPS and enhance the expression of secretory IgA in the rat intestine. Rats were given either corn oil or MCTs by gavage daily for 1 wk, and LPS or saline vehicle was administered via the tail vein. They were then killed, and serum and sections from the gut were collected for further analysis. Western blot analysis for secretory IgA revealed that MCTs significantly enhanced its expression in the ileum compared with corn oil in rats administered saline. After LPS challenge, expression of secretory IgA was decreased in the corn oil group but not in the MCTs group. The mRNA expression of IL-6 was assessed by real-time RT-PCR, because IL-6 regulates secretory IgA in the intestine. The expression was significantly greater in the MCTs group than in the corn oil group after LPS injection. Increases in expression of proinflammatory cytokines or chemokines such as TNF-alpha, IL-18, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 in the ileum were significantly blunted by MCTs. In addition, the mRNA expression of the Th2 IgA-stimulating cytokine IL-10 in the ileum and Peyer's patches was significantly greater in the MCTs than the corn oil group. In contrast, the mRNA expression of the Th1 IgA-inhibiting cytokine interferon-gamma was blunted by MCTs. As a result, intestinal injury was significantly reduced. Therefore, MCTs protect the gut by modulating the immune response to LPS and enhancing secretory IgA expression.  相似文献   

15.
Intestinal ischemia/reperfusion (I/R) is a critical and triggering event in the development of distal organ dysfunction, frequently involving the lungs. Respiratory failure is a common cause of death and complications after intestinal I/R. In this study we investigated the effects of edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) on the prevention of lung injury induced by intestinal I/R in rats. Edaravone has been used for protection against I/R injury in patients with cerebral infarction. When rats were subjected to 180 min of intestinal ischemia, a high incidence of mortality was observed within 24 h. In this situation, intravenous administration of edaravone just before the start of reperfusion reduced the mortality in a dose-dependent manner. To examine the efficacy of edaravone on the lung injury induced by intestinal I/R in more detail, we performed 120 min of intestinal ischemia followed by 120 min of reperfusion. Edaravone treatment decreased the neutrophil infiltration, the lipid membrane peroxidation, and the expression of proinflammatory cytokine interleukin-6 mRNA in the lungs after intestinal I/R compared to the I/R-treated rat lungs without edaravone treatment. Histopathological analysis also indicated the effectiveness of edaravone. In conclusion, edaravone ameliorated the lung injury induced by intestinal I/R, resulting in a reduction in mortality.  相似文献   

16.
Radiation enteritis occurs as a response to abdominal radiation, which can cause mucosal damage in the gastrointestinal mucosal epithelium. The small intestine is one of the most radiosensitive organs in the abdomen. The present study was undertaken to investigate the effect of octreotide (OCT) administration on heme oxygenase-1 (HO-1) expression of the radiation enteritis model. Rats received 50 mg/kg/day OCT for 4 days before irradiation and continued for 3 days after irradiation. Intestinal myeloperoxidase (MPO) activities, malondialdehyde (MDA) levels are indicators of oxidative damage while caspase-3 activities reveal apoptosis degree of the small intestine. At histological examination, the terminal ileum tissue was analyzed for morphological changes. Irradiation significantly increased the intestinal MPO and caspase-3 activities, MDA levels and HO-1 expression in comparison to sham control group. OCT treatment was associated with increased HO-1 expression and caspase-3 activity, decreased MPO activity and MDA levels. Histological examination revealed that the intestinal mucosal structure was preserved in the OCT treated group. OCT appears to have protective effects against radiation-induced intestinal damage. This protective effect is, in part, mediated by modification of the inflammatory response and the induction of HO-1 expression.  相似文献   

17.
Gut injury and loss of normal intestinal barrier function are key elements in the paradigm of gut-origin systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome (MODS). As hypoxia-inducible factor (HIF-1) is a critical determinant of the physiological and pathophysiological response to hypoxia and ischemia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Using partially HIF-1α-deficient mice in an isolated superior mesenteric artery occlusion (SMAO) intestinal ischemia reperfusion (I/R) injury model (45 min SMAO followed by 3 h of reperfusion), we showed a direct relationship between HIF-1 activation and intestinal I/R injury. Specifically, partial HIF-1α deficiency attenuated SMAO-induced increases in intestinal permeability, lipid peroxidation, mucosal caspase-3 activity, and IL-1β mRNA levels. Furthermore, partial HIF-1α deficiency prevented the induction of ileal mucosal inducible nitric oxide synthase (iNOS) protein levels after SMAO and iNOS deficiency ameliorated SMAO-induced villus injury. Resistance to SMAO-induced gut injury was also associated with resistance to lung injury, as reflected by decreased levels of myeloperoxidase, IL-6 and IL-10 in the lungs of HIF-1α(+/-) mice. In contrast, a short duration of SMAO (15 min) followed by 3 h of reperfusion neither induced mucosal HIF-1α protein levels nor caused significant gut and lung injury in wild-type or HIF-1α(+/-) mice. This study indicates that intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. However, the duration and severity of the gut I/R insult dictate whether HIF-1 plays a gut-protective or deleterious role.  相似文献   

18.
We have investigated gene and protein expression of ST2/ST2L in a murine alveolar macrophage (AM) cell line, MH-S, reacting to inflammatory stimuli in vitro and in the lung tissue of an acute lung injury model in vivo. We have also analyzed the effect of soluble ST2 protein on inflammatory response of MH-S cells. Lipopolysaccharide (LPS) and proinflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha induced ST2 mRNA expression in MH-S cells. In an acute lung injury model, protein and mRNA expression levels of ST2 increased to the maximal level at 24-72h after the LPS challenge. Furthermore, pretreatment with ST2 protein significantly reduced the protein production and gene expression of IL-1alpha, IL-6, and TNF-alpha in LPS-stimulated MH-S cells in vitro. These results suggest that increases in endogenous ST2 protein in AM, which is induced by inflammatory stimuli, such as LPS and proinflammatory cytokines, may modulate acute lung inflammation.  相似文献   

19.
Yan GT  Hao XH  Xue H  Wang LH  Li YL  Shi LP 《生理学报》2002,54(1):28-32
为了探讨肠缺血/再灌注损伤后IL-1β基因表达和蛋白含量变化与磷脂酶A2抑制之间的关系,采用大鼠肠缺血/再灌注损伤模型,在对照组,损伤组和磷脂酶A2抑制剂处理组动物中收集血清,肺灌洗液,腹腔灌洗液及全身重要脏器组织样品,采用放射免疫法测定IL-1β含量,并且RT-PCR法测定肺组织中IL-1β和Ⅱ型PLA2基因表达,结果表明,损伤后6h血清中IL-1β含量明显高于对照组;损伤后1和3h,腹腔注保IL-1β也明显高于对照组;损伤后肝组织中IL-1β水平有明显增加,而肺,肾、肠组织中IL-1β没有明显变化。损伤后肺灌洗液中IL-1β也明显高于对照组水平,肺组织中IL-1βmRNA表达增加,而Ⅱ型PLA2mRNA在损伤后表达反而有所下降,采用磷脂酶A2抑制剂氯喹,环氧化物酶抑制剂消炎痛,血小板活化因子受体阻断剂SR27417后,IL-1β蛋白和基因表达有不同的改变,提示肠缺血/再灌注损伤后一定时间内,肝内IL-1βmRNA表达和血中IL-1β水平明显增高,但是否与磷脂酶A2激活或其代谢产物的释放有关尚需进一步证明。  相似文献   

20.
The induction of heme oxygenase 1 (HO-1) by a single treatment with cobalt protoporphyrin (CoPPIX) protects against inflammatory liver failure and ischemia reperfusion injury after allotransplantation. In this context, the HO-1-mediated inhibition of donor-derived dendritic cell maturation and migration is discussed as one of the key events of graft protection. To investigate the poorly understood mechanism of CoPPIX-induced HO-1 activity in more detail, we performed gene expression analysis in murine liver, revealing the up-regulation of STAT3 after CoPPIX treatment. By using wild-type and HO-1-deficient dendritic cells we demonstrated that LPS-induced maturation is dependent on STAT3 phosphorylation and independent of HO-1 activity. In summary, our observations revise our understanding of the anti-inflammatory properties of HO-1 and highlight the immunomodulatory capacity of STAT3, which might be of further interest for targeting undesired immune responses, including ischemia reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号