首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
The Lactobacillus plantarum alr gene encoding alanine racemase was cloned by complementation of an Escherichia coli Alr- DadX- double mutant strain. Knockout of the alr gene abolished all measurable alanine racemase activity, and the mutant was shown to be strictly dependent on D-alanine for growth.  相似文献   

3.
Factors affecting the level of alanine racemase in Escherichia coli   总被引:6,自引:5,他引:1  
Alanine racemase occupies a key position in the alanine branch of peptidoglycan biosynthesis. The level of this enzyme in Escherichia coli W is a function of the carbon source. For example, growth on l-alanine causes a 25-fold higher level of alanine racemase when compared with growth on glucose. When potential inducers of this enzyme are added to either a glucose or succinate medium, a low specificity is observed with those compounds that cause higher levels of enzyme. Growth of E. coli W on either pyruvate, d-alanine, or l-alanine resulted in lower levels of l- and d-alanine in the internal pool. With each of these carbon sources, the level of alanine racemase was markedly elevated when compared to glucose-grown cells; thus, with single carbon sources, the concentration of alanine in the pool is inversely related to the specific activity of alanine racemase. These observations support derepression as a possible mechanism that gives rise to higher levels of alanine racemase. Since multiple forms of the alanine racemase were not detected in extracts from E. coli W grown on various carbon sources, it would appear that this type of heterogeneity is not a consideration in interpreting the above results.  相似文献   

4.
We constructed the high-expression system of the alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli BL 21 (DE3) to characterize the enzymological and structural properties of the gene product, Alr. The Alr was expressed in the soluble fractions of the cell extract of the E. coli clone and showed alanine racemase activity. The purified Alr was a dimer with a molecular mass of 78 kDa. The Alr required pyridoxal 5'-phosphate (PLP) as a coenzyme and contained 2 mol of PLP per mol of the enzyme. The holoenzyme showed maximum absorption at 420 nm, while the reduced form of the enzyme showed it at 310 nm. The Alr was specific for alanine, and the optimum pH was observed at about nine. The Alr was relatively thermostable, and its half-life time at 60 degrees C was estimated to be 26 min. The K(m) and V(max) values were determined as follows: l-alanine to d-alanine, K(m) (l-alanine) 5.01 mM and V(max) 306 U/mg; d-alanine to l-alanine, K(m) (d-alanine) 5.24 mM and V(max) 345 U/mg. The K(eq) value was calculated to be 1.07 and showed good agreement with the theoretical value for the racemization reaction. The high substrate specificity of the Alr from C. glutamicum ATCC 13032 is expected to be a biocatalyst for d-alanine production from the l-counter part.  相似文献   

5.
从恶臭假单胞菌(Pseudomonas putida)200的基因组出发,用PCR方法克隆到两个独立作用的丙氨酸消旋酶基因,称之为dadX和alr。DadX编码357个氨基酸长的多肽,计算分子量为38.82kDa,alr编码409个氨基酸长的多肽,计算分子量为44.182kDa。序列分析显示,DadX的氨基酸序列与Pseudomonas putidaKT2440,铜绿假单胞菌(Pseudomonas aeruginosa),鼠伤寒沙门氏菌(Salmonella typhimurium)和大肠杆菌(Escherichia coli)的DadX比较,相似性分别为96.64%、71.99%、44.88%和47.37%。Alr的氨基酸序列与Pseudomonas putidaKT2440比较,同源性为94.38%,而与铜绿假单胞菌(P.aeruginosa)、鼠伤寒沙门氏菌(S.typhimurium)和大肠杆菌(E.coli)的Alr比较,同源性均较低,分别为22.89%、25.72%和26.44%。在P.putida200的DadX和Alr氨基酸序列中部发现有对于酶活性至关重要的保守区域,如磷酸吡哆醛(PLP)结合位点。DadX和alr在大肠杆菌中得到表达,DadX丙氨酸消旋酶只对丙氨酸有消旋作用,而Alr丙氨酸消旋酶可以作用于丙氨酸和丝氨酸两种底物,且对丝氨酸特异性更高。Alr的表达不依赖于外源启动子,说明在其结构基因上游存在启动子结构。  相似文献   

6.
The nucleotide sequence of the alr gene encoding the biosynthetic alanine racemase in Salmonella typhimurium is reported. The sequence was determined by the dideoxy chain termination method of Sanger mostly from recombinants derived from shotgun and specific subcloning of a 2.6-kilobase region containing the alr gene. The final bridging of nonoverlapping contiguous sequences was accomplished with the use of synthetic site-specific primers. The alr gene was found to be 1077 base pairs in length encoding a protein of 359 amino acid residues. Comparison of alr with the dadB gene encoding the catabolic alanine racemase in S. typhimurium revealed almost identical size (1077 vs. 1068 base pairs) and 52% sequence identity. The respective gene products displayed 43% homology, which includes a decapeptide bearing the pyridoxal 5'-phosphate binding site.  相似文献   

7.
  • 1.1. Eighteen molluscan species were examined for the presence of d-alanine and alanine racemase activity to probe the probable relation between them.
  • 2.2. Two bivalve species had high concentration of d-alanine and l-alanine (1:1) and showed high activities of alanine racemase. In these species, the occurrence of d-alanine could be explained by the action of alanine racemase.
  • 3.3. In other species, the levels of d-alanine and enzyme activity were low, and the occurrence of d-alanine did not correspond with the presence of alanine racemase activity.
  • 4.4. The mechanism of the occurrence of d-alanine in molluscan tissues seems to vary from species to species and seems not to be associated with the phylogenic situation or habitats of the respective species.
  相似文献   

8.
The Helicobacter pylori NCTC 11637 alanine racemase gene, alr1, was cloned based on a putative alanine racemase gene, alr, of H. pylori 26695. The protein, Alr1, was purified to homogeneity from Escherichia coli MB2795 cells harboring the alr1 gene. The protein exclusively catalyzes the conversion of l-alanine to the d-isomer with K(m) and V(max) values of 100 mM and 909 mumol min(-1) mg(-1), respectively. The values are 16-fold higher than those for the reaction in the reverse direction. The molecular weight of Alr1 is 42,000 by SDS-PAGE, and 68,000 by gel-filtration analysis. The optimal pH and temperature are pH 8.3 and 37 degrees C, respectively, in good accordance with the characteristics shown by the alanine racemase purified from H. pylori NCTC 11637 cells. Pyridoxal 5'-phosphate was suggested to be the cofactor. The physiological function of Alr1 is discussed regarding energy production in the microbial cells.  相似文献   

9.
Alanine racemases are ubiquitous, almost uniquely prokaryotic enzymes catalyzing the racemization between l- and d-alanine. The requirement for d-alanine as a necessary component of the bacterial cell wall makes this class of enzymes a logical target for the development of novel antibiotics. In an effort to better understand the structure and mechanism of these enzymes, we have cloned the two independent alanine racemases from Pseudomonas aeruginosa, an important opportunistic bacterial pathogen of humans and animals. The dadX(PA) and alr(PA) genes have been sequenced, overexpressed, and their activity was demonstrated by complementing d-alanine auxotrophs of Escherichia coli. Both gene products were purified to electrophoretic homogeneity, the enzymes were characterized biochemically, and preliminary crystals were obtained.  相似文献   

10.
Genetic analysis of a d-alanine requiring mutant (dal) of Bacillus subtilis reveals that the gene that codes for d,l-alanine racemase is linked to purB. The order of genes in this region of the chromosome is purB, pig, tsi, dal. Thus there are at least two clusters of genes that regulate cell wall biosynthesis in B. subtilis.  相似文献   

11.
Characterization of the alanine racemases from two mycobacteria   总被引:2,自引:0,他引:2  
D-Alanine is a necessary precursor in the biosynthesis of the bacterial peptidoglycan. The naturally occurring L-alanine isomer is racemized to its D-form through the action of a class of enzymes called alanine racemases. These enzymes are ubiquitous among prokaryotes, and with very few exceptions are absent in eukaryotes, making them a logical target for the development of novel antibiotics. The alanine racemase gene from both Mycobacterium tuberculosis and M. avium was amplified by PCR and cloned in Escherichia coli. Overexpression of the proteins in the E. coli BL21 system, both as native and as His-tagged recombinant products, has been achieved. The proteins have been purified to electrophoretic homogeneity and analyzed biochemically. A D-alanine requiring double knock-out mutant of E. coli (alr, dadX) was constructed and the cloned genes were able to complement its deficiencies.  相似文献   

12.
Fresh water crayfish Procambarus clarkii is known to accumulate d-alanine remarkably in muscle after seawater acclimation, accompanied by an increase in alanine racemase activity. We have purified alanine racemase from crayfish muscle to homogeneity. The enzyme is a monomeric protein with a molecular mass of 58 kDa. It is highly specific to alanine and does not racemize l-serine, l-aspartate, l-glutamate, l-valine and l-arginine. The enzyme shows the highest activity at pH 9.0 in the conversion of l- to d-alanine and at pH 8.5 in the reverse conversion. Properties such as amino acid sequence, quaternary structure, pyridoxal 5′-phosphate (PLP)-dependency, pH-dependency and kinetic parameters seem to be distinct from those of the microbial alanine racemases. Various salts including NaCl at concentrations around seawater level were potently inhibitory for the activity in both of l- to -d and d- to -l direction.  相似文献   

13.
This paper describes the use of the alr gene, encoding alanine racemase, as a promoter-screening tool for the identification of conditional promoters in Lactobacillus plantarum. Random fragments of the L. plantarum WCFS1 genome were cloned upstream of the promoterless alr gene of Lactococcus lactis in a low-copy-number plasmid vector. The resulting plasmid library was introduced into an L. plantarum Deltaalr strain (MD007), and 40,000 clones were selected. The genome coverage of the library was estimated to be 98%, based on nucleotide insert sequence and restriction analyses of the inserts of randomly selected clones. The library was screened for clones that were capable of complementing the D-alanine auxotroph phenotype of MD007 in media containing up to 10, 100, or 300 micro g of the competitive Alr inhibitor D-cycloserine per ml. Western blot analysis with polyclonal antibodies raised against lactococcal Alr revealed that the Alr production level required for growth increased in the presence of increasing concentrations of D-cycloserine, adding a quantitative factor to the primarily qualitative nature of the alr complementation screen. Screening of the alr complementation library for clones that could grow only in the presence of 0.8 M NaCl resulted in the identification of eight clones that upon Western blot analysis showed significantly higher Alr production under high-salt conditions than under low-salt conditions. These results established the effectiveness of the alanine racemase complementation screening method for the identification of promoters on their conditional or constitutive activity.  相似文献   

14.
Schizosaccharomyces pombe has an open reading frame, which we named alr1(+), encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1(+) gene in Escherichia coli and purified the gene product (Alr1p), with an M(r) of 41,590, to homogeneity. Alr1p contains pyridoxal 5'-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent K(m) and V(max) values as follows: for L-alanine, 5.0 mM and 670 micromol/min/mg, respectively, and for D-alanine, 2.4 mM and 350 micromol/min/mg, respectively. The enzyme is almost specific to alanine, but L-serine and L-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of L-alanine, respectively. S. pombe uses D-alanine as a sole nitrogen source, but deletion of the alr1(+) gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for L-alanine coupled with racemization plays a major role in the catabolism of D-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses L-alanine but not D-alanine as a sole nitrogen source. Moreover, D-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1(+) gene enabled S. cerevisiae to grow efficiently on D-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of D-alanine.  相似文献   

15.
The nucleotide sequence of the alanine racemase (EC 5.1.1.1) gene from a thermophile, Bacillus stearothermophilus, was determined by the dideoxy chain termination method with universal and synthetic site-specific primers. The amino acid sequence of the enzyme predicted from the nucleotide sequence was confirmed by peptide sequence information derived from the N-terminal amino acid residues and several tryptic fragments. The alanine racemase gene consists of 1158 base pairs encoding a protein of 386 amino acid residues; the molecular weight of the apoenzyme is estimated as 43,341. The racemase gene of B. stearothermophilus has a closely similar size (1158 vs 1167 base pairs) to that of the gene of a mesophile, B. subtilis, but shows a higher preference for codons ending in G or C. A comparison of the amino acid sequence with those of Bacillus subtilis and Salmonella typhimurium dadB and alr enzymes revealed overall sequence homologies of 31-54%, including an identical octapeptide bearing the pyridoxal 5'-phosphate binding site. Although the residues common in the four racemases are not continuously arrayed, these constitute distinct domains and their hydropathy profiles are very similar. The secondary structure of B. stearothermophilus alanine racemase was predicted from the results obtained by theoretical analysis and circular dichroism measurement.  相似文献   

16.
W S Faraci  C T Walsh 《Biochemistry》1988,27(9):3267-3276
Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L----D and D----L directions for all three enzymes to assess the degree to which abstraction of the alpha-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of alpha-3H from substrate to product and solvent exchange/substrate conversion experiments in 3H2O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis.  相似文献   

17.
Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Deltaalr) showed auxotrophy for D-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented D-alanine auxotrophy in the L. plantarum Deltaalr and L. lactis Deltaalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to D-cycloserine, a competitive inhibitor of Alr (600 and 200 micro g/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that D-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Deltaalr. The resulting strain could grow in the absence of D-alanine only when expression of the alr gene was induced with nisin.  相似文献   

18.
A stable mutant of Lactobacillus plantarum deficient in alanine racemase (Alr) was constructed by two successive homologous recombination steps. When the mutant was supplemented with D-alanine, growth and viability were unaffected. Surprisingly, deprivation of d-alanine during exponential growth did not result in a rapid and extensive lysis as observed in Alr-deficient strains of Escherichia coli or Bacillus subtilis. Rather, the starved mutant cells underwent a growth arrest and were gradually affected in viability with a decrease in colony forming units over 99% in less than 24 h. Additionally, fluorescent techniques demonstrated a loss of cell envelope integrity in the starved cells. Prolonged d-alanine starvation resulted in cells with an aberrant morphology. Scanning and transmission electron microscopy analyses revealed an increase in cell length, deficiencies in septum formation, thinning of the cell envelope and perforation of the cell wall in the septum region. We discuss the involvement of peptidoglycan hydrolases in these phenotypic defects in the context of the crucial role played by D-alanine in peptidoglycan biosynthesis and teichoic acids substitution.  相似文献   

19.
Acetobacter aceti converts ethanol to acetic acid, and survives acetic acid exposure by tolerating cytoplasmic acidification. Alanine racemase (Alr) is a pyridoxal 5' phosphate (PLP) -dependent enzyme that catalyzes the interconversion of the d- and l-isomers of alanine and has a basic pH optimum. Since d-alanine is essential for peptidoglycan biosynthesis, Alr must somehow function in the acidic cytoplasm of A. aceti. We report the partial purification of native A. aceti Alr (AaAlr) and evidence that it is a rather stable enzyme. The C-terminus of AaAlr has a strong resemblance to the ssrA-encoded protein degradation signal, which thwarted initial protein expression experiments. High-activity AaAlr forms lacking a protease recognition sequence were expressed in Escherichia coli and purified. Biophysical and enzymological experiments confirm that AaAlr is intrinsically acid-resistant, yet has the catalytic properties of an ordinary Alr.  相似文献   

20.
The specific activities of l-alanine:d-alanine racemase, d-alanine:d-alanine ligase, and the l-alanine, d-glutamic acid, meso-diaminopimelic acid, and d-alanyl-d-alanine adding enzymes were followed during growth of Escherichia coli. The specific activities were nearly independent of the growth phase. d-Alanine:d-alanine ligase was inhibited by d-alanyl-d-alanine, d-cycloserine, glycine, and glycyl-glycine. l-Alanine:d-alanine racemase was found to be sensitive to d-cycloserine, glycine, and glycyl-glycine. The l-alanine adding enzyme was inhibited by glycine and glycyl-glycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号