首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Exp. 1, 40 ewes were used in a 2 x 2 factorial design to investigate the effects of intrauterine versus cervical insemination and superovulation using pig FSH or PMSG and GnRH on egg recovery and fertilization rate. Cervical inseminations were carried out at 48 and 60 h (N = 20 ewes) and intrauterine insemination at 52 h (N = 20 ewes) after progestagen pessary withdrawal. Eggs were recovered on Day 3 of the oestrous cycle. Ovulation, egg recovery and fertilization rates were independent of the type of superovulatory hormone used. Fertilization rate was high irrespective of insemination site but intrauterine insemination at 52 h was associated with a significant (P less than 0.01) decrease in egg recovery of over 40% compared with cervically inseminated ewes. In Exp. 2 ewes were inseminated at 36 (N = 5), 48 (N = 6) or 60 (N = 6) h after pessary withdrawal to determine the optimum intrauterine insemination time to maximize both fertilization rate and egg recovery. Egg recovery per ewe flushed was 23, 59 and 67% after intrauterine insemination at 36, 48 and 60 h respectively. Correspondingly, 0, 85 and 100% of the eggs recovered were fertilized. The results of Exps 1 and 2 suggest that when intrauterine insemination occurs before or during ovulation it interferes with oocyte collection by the fimbria. In Exp. 3 egg recovery and fertilization rates were determined after cervical insemination at 48 and 60 h (N = 8) or intrauterine insemination at 48 (N = 9) or 60 (N = 8) h after progestagen withdrawal. Ewes in the last two groups were subdivided and inseminated unilaterally or bilaterally. Egg recovery was high after cervical insemination (95%) but only 36% of these eggs were fertilized. Unilateral intrauterine insemination was as effective as bilateral in ensuring high fertilization rates (100 versus 97%). Intrauterine insemination at 48 h compared with 60 h resulted in a significantly lower (P less than 0.05) percentage of eggs recovered (42 versus 90% respectively). However, reducing the degree of interference by adopting unilateral rather than bilateral insemination did not alleviate the detrimental effects of the 48-h insemination time on egg recovery. From these results we advocate the adoption of intrauterine insemination at 60 h after progestagen withdrawal to maximize fertilization rate and egg recovery in superovulated ewes.  相似文献   

2.
An experiment was undertaken to assess the fertilizing capacity of sex-sorted, frozen-thawed ram spermatozoa, artificially inseminated into superovulated ewes, and the quality and survivability of the resultant pre-sexed embryos. Synchronized (intravaginal progestagen pessary and GnRH) donors were superovulated using PMSG and repeat ovarian stimulation with FSH before insemination. Ewes (n=67) were inseminated with either 30x10(6) or 15x10(6) motile non-sorted (control) or 15x10(6) motile sex-sorted (sorted) frozen-thawed spermatozoa (control: C30 or C15; sorted: S15, respectively) and the resultant embryos transferred immediately into synchronized recipients (n=160). The percentage of transferable embryos, pregnancy rate and embryo survival were similar (P>0.05) across all treatments. Oocyte cleavage rate was higher for ewes inseminated with S15 (172/230; 74.8%; P<0.05) than for C15 (97/151; 64.2%) or C30 (89/141; 63.1%) spermatozoa. Of the lambs resulting from embryos produced with sex-sorted spermatozoa, 86/93 (92.5%) were born of the predicted sex. This study demonstrated for the first time that pre-sexed offspring derived from superovulated sheep can be produced following transfer of embryos. Furthermore, sex-sorting by flow cytometry did not compromise the in vivo fertilizing capacity of ram spermatozoa in superovulated sheep, nor did it affect the quality or survivability of the resultant embryos.  相似文献   

3.
Eighteen Border Leicester x Scottish Blackface ewes, primed with 300 mg progesterone (12 d) and superovulated with decreasing doses (6, 5, 3 and 2 mg) of porcine FSH, were inseminated with fresh semen, using laparoscopic intrauterine procedures at 48 (Group E) or 60 h (Group L) after exogenous progesterone removal. Five days after insemination, embryos were collected and classified on the basis of their morphological development. During the subsequent 3 d of in vitro culture (38.5 degrees C; 5% CO2) the embryos were evaluated at 24-h intervals. After 72 h, the embryos were individually fixed (24 h) and stained with aceto-orcein and the nuclei were then counted to provide an objective index of cell proliferation and development. Mean (+/-SEM) ovulation rates for the 2 groups (9.2+/-1.5 and 7.1+/-1.2, respectively) and the corresponding percentages (53 vs 59) of embryos collected by laparoscopy were unaffected by insemination time. All donors yielded fertilized ova, but whereas all Group-E donors yielded 1 or more viable embryos (i.e., >32 cells), only 5 Group-L ewes yielded viable embryos (P<0.10). At collection, the percentages of embryos at the morula stage of development were 98 (Group E n = 44) and 39 (Group L n = 38; P<0.001). Few of the remaining ova (Group E = 0% Group L = 8%) were at the 1-cell stage of development when collected, indicating that retarded development post fertilization, not fertilization failure, was the principal consequence of delayed insemination. The percentages of embryos that continued to develop during in vitro culture were 91 and 37 for Groups E and L, respectively (P<0.001), and all of these reached the blastocyst stage. Of these blastocysts, 75 and 50% in Groups E and L hatched in vitro (P<0.10), with mean (+/-SEM) nuclei counts of 148+/-22.7 and 76+/-13.8 (P<0.02), respectively. In conclusion, while delayed intrauterine insemination did not affect the efficiency of ovum collection, it caused a major reduction in the yield of embryos that were capable of developing during in vitro culture. However, fertilization failure accounted for only 13% of the loss in viability following late insemination.  相似文献   

4.
Donor and recipient factors were assessed during development of embryos following superovulation, collection at the pronuclear and two-cell stage, culture in Synthetic Oviduct Fluid medium for 5 days and twin transfer into synchronised recipients to elucidate what factors affect embryo development and post-transfer survival. In particular, the administration of exogenous progesterone to recipients using an intravaginal CIDRTM device immediately following embryo transfer was investigated.

From 138 embryos collected from 30 donor ewes, 75% (103) were of transferable quality following culture, of which 100 were transferred to 50 recipients. There was significant variation (P < 0.001) in embryo development to the blastocyst stage between different donor ewes, but this was not related to the donor ovulation rate. At ultrasound sonography (approximately Day 60 of pregnancy), 58% of recipients were pregnant and 42% embryos had survived. Donor ovulation rate was related to embryo survival (P < 0.05) after transfer; the survival rate of embryos from ewes with high ovulation rates was lower than that of embryos from ewes with low ovulation rates. Exogenous progesterone supplementation following transfer did not affect embryo survival, rate of embryo development or plasma progesterone levels. In general, the results from this study suggest that factors other than efficacy of embryo culture can affect the outcome of embryo survival following transfer and that, where possible, these factors should be considered and balanced in experimental designs.  相似文献   


5.
The present study was designed to determine the effect of pooling embryos from two donors on the reproductive success of transfer of vitrified/warmed porcine blastocysts. Intact blastocysts were collected from superovulated Large White Hyperprolific gilts (n = 24) on Days 5-5.5 after artificial insemination. Embryos were recovered by flushing the uterine horns, and unhatched blastocysts were selected. Vitrification and warming were performed as described by Berthelot et al. [Cryobiology 41(2000) 116]. To evaluate in vitro development, 37 vitrified/warmed blastocysts were cultured, non-vitrified embryos (n = 48) were used as controls. Embryo transfers were conducted in asynchronous (-24 h) Meishan gilts (n = 20). Twenty vitrified/warmed blastocysts were surgically transferred into one uterine horn. Ten recipients received embryos from one donor (Group 1) and the other 10 transfers were performed with mixed embryos from two donors (Group 2). Pregnancy was assessed ultrasonographically at Day 25 after estrus and recipients were slaughtered at Day 30 after transfer. In vitro survival rate of the vitrified/warmed blastocysts was lower (P < 0.01) than that from control embryos (73.0% versus 93.7%). The pregnancy rate for Group 1 (70%) was not different (P > 0.05) than that from Group 2 (90%). No significant differences were detected between Groups 1 and 2 for in vivo embryo development (number fetuses/transferred embryos in pregnant recipients) or in vivo embryo survival (number viable fetuses/transferred embryos in pregnant recipients). However, the in vivo efficiency (number viable fetuses/total transferred embryos) was higher (P < 0.05) when transfers were performed with embryos from two donors (19.5% versus 30.5%). These results indicate that pooling embryos from two donors increases the in vivo efficiency after transfer of vitrified/warmed porcine blastocysts.  相似文献   

6.
In a study of the time of ovulation following synchronization of estrus in the ewe, the effect of time of treatment with GnRH (24 vs 36 h after pessary removal) and dosage (6.25 to 100 ug per ewe) were examined. All treatments synchronized the time of ovulation irrespective of when untreated ewes commenced to ovulate. As part of an evaluation of GnRH treatment in artificial insemination programs, an assessment was made of the quality of eggs obtained from control ewes and ewes treated with GnRH at either 24 or 36 h after pessary removal. Treatment at 24 h increased the number of retarded embryos (P < 0.01) and unfertilized ova (P < 0.01) collected per ewe, reduced the number of embryos collected per ewe (P < 0.01), and reduced (P < 0.05) the percentage of pregnant ewes compared with other groups. However, there were no differences between control ewes and ewes treated with GnRH at 36 h. GnRH treatment at 36 h was consequently examined as a means of improving conception rates following the intrauterine insemination of frozen-thawed semen. Insemination of GnRH-treated ewes 8 to 12 h before the median time of ovulation resulted in a nonsignificant increase (range 5.7 to 7.3%) in the percentage of ewes of mature age which became pregnant. Insemination 0 to 4 h before the median time of ovulation resulted in a nonsignificant decrease in the percentage of pregnant ewes. GnRH treatment did not influence the number of fetuses per ewe. Reasons for the failure of this treatment to significantly improve ewe fertility are discussed.  相似文献   

7.
Of 111 variable age, pedigree ewes subjected to a range of superovulatory regimens and then submitted to embryo recovery by laparoscopy, nine had adhesions corresponding to a mid-line laparotomy (presumably from a previous attempt to recover embryos) and could not have their embryos recovered by the laparoscopic technique. Of the remainder, 27 ewes (26.5%) had less than three ovulations or had prematurely regressing corpora lutea at the selected time for embryo recovery (Days 5 to 6 following insemination), and no attempt was made to recover embryos from them. For the 75 ewes subjected to laparoscopic ovum recovery following laparoscopic intrauterine insemination, the average number of ovulations (+/- SEM) was 7.9 +/- 0.6; the average ovum recovery (mean of values for each ewe) was 51.7% +/- 3.5; and the percentage of recovered ova that were fertilized was 87.3%. For a further nine 3-yr-old crossbred ewes the mean values for ovulation and ovum recovery were 7.6 +/- 1.2 and 70.1 +/- 7.7, and were not significantly different for the two insemination methods used (laparoscopic intrauterine vs cervical). In general, ovulation rates for ewes given pregnant mare serum gonadotrophin (PMSG) tended to be lower (5.2 +/- 0.7) than for those given porcine follicle stimulating hormone (pFSH, 7.7 +/- 0.8) or human menopausal gonadotrophin (hMG, 7.7 +/- 2.3). Ova recovery rates were similar on Days 5 and 6 (Day 0 = insemination), and were not affected by method of insemination (laparoscopic intrauterine vs cervical).  相似文献   

8.
After lambing in late November, oestrus and ovulation were induced by using a CIDR device and PMSG in early weaned (N = 13) or lactating (N = 14) Border Leicester x Scottish Blackface ewes between 23 and 29 days after parturition. Ewes were intrauterine inseminated under laparoscopic visualization 54-55 h after CIDR-device withdrawal and eggs recovered on Day 3 of the cycle. Ovum recovery and fertilization rates were higher in lactating than in early weaned ewes, with fertilization being achieved as early as 24 days post partum in both groups. Of the 7 early weaned and 11 lactating ewes yielding eggs, fertilization occurred in 4 and 7 ewes respectively. A total of 20 embryos were transferred to the normal uterine environment of 15 recipient ewes in which the interval from parturition was greater than 150 days. Pregnancies were successfully established in 9 recipient ewes, resulting in the birth of 10 viable lambs. Prolactin concentrations were significantly higher (P less than 0.001) in lactating than in early weaned ewes throughout the study. Nevertheless, normal luteal function (as assessed by daily progesterone concentrations) was exhibited by 12 of 14 lactating and 8 of 13 early weaned ewes. Two post-partum donors in which the corpora lutea completely failed to secrete progesterone yielded fertilized eggs which developed to term when transferred to a normal uterine environment. The results show that sheep oocytes can be fertilized using laparoscopic intrauterine insemination as early as 24 days after parturition and that the resulting embryos are viable when recovered on Day 3 after oestrus and transferred to a normal uterine environment.  相似文献   

9.
We wished to evaluate the effects of FSH/LH ratio and number of doses of p-FSH during a superovulatory treatment on ovulation rate and embryo production (Experiment I). In Experiment II, we studied the efficacy of fertilization after various insemination schedules in superovulated donors. In Experiment I estrus was synchronized in 40 ewes (FGA, for 9 days plus PGF2alpha on Day 7) and the ewes were randomly assigned to four treatment groups as follows (n = 10 ewes each): Group A: four p-FSH doses with the FSH/LH ratio held constant (1.6); Group B: four p-FSH doses with the FSH/LH ratio decreasing (FSH/LH 1.6-1.0-0.6-0.3); Group C: eight p-FSH doses with the FSH/LH ratio held constant (1.6); Group D: eight p-FSH doses and FSH/LH ratio decreasing (1.6-1.6, 1.0-1.0, 0.6-0.6, 0.3-0.3). p-FSH administrations were performed twice daily 12 h apart. The ewes were mated at the onset of estrus and again after 12 and 24 h; then, one ram per four ewes was maintained with the ewes for two additional days. Ovarian response and embryo production were assessed on Day 7 after estrus. Experiment II. Three groups (n = 10 each) of superovulated ewes were inseminated as follows: Group M: mated at onset of estrus; Group AI: artificial insemination 30 h after onset of estrus; M + AI) mating at onset of estrus and intrauterine AI performed 30 h from estrus with fresh semen. Results of Experiment I showed that treatment (D) improved (P < 0.05) ovulatory response in comparison to Groups (C) and (A). The fertilization rate was lower (P < 0.01) in Group D) than Group (A). Also the proportion of transferable embryos was lower in Group (D) in comparison to all the other treatments (P < 0.01). Group A gave the best production of embryos (7.3/ewe; 89.0% transferable). In Experiment II, combined mating plus AI improved fertilization rate (80.3%) compared to both mating (P < 0.01) and AI (P < 0.02) alone.  相似文献   

10.
Adult Merino ewes (n=448) were apportioned into two groups and inseminated with: extended at 30 degrees C with skim milk and stored for 6h at 15 degrees C (cooled semen) or extended with skim milk-citrate trisodium with egg yolk and stored for 24h at 5 degrees C (chilled semen). Each group was further subdivided according to the time of cervical insemination at 42, 46 and 50h after pessary (MAP-60 mg) removal and according to the dilution of the semen (120 x 10(6) spermatozoa in 0.05, 0.1 and 0.2 ml). The pregnancy rate after insemination with cooled semen was 50% better than that after chilled semen (56.7 vs. 37.5%; P<0.001). Pregnancy rate was not affected by the volume of insemination; however, there was a tendency of increased lambing rate with an insemination dose of 0.1 cc (1:2, dilution), especially when the ewes were inseminated with cooled semen. The effect of time on insemination was significant only in ewes inseminated with chilled semen at 5 degrees C (P<0.01). Insemination carried out 46 h after pessary removal resulted in higher pregnancy and lambing rate (36.5, 31.1; 52.0, 45.3; and 24.0, 20.0 at 42, 46 and 50h, respectively). Pregnancy of ewes inseminated with chilled semen at 46 h after pessary removal was similar to that obtained using cooled semen (52.0 vs. 56.7%). From this study, it is concluded that advancing the time of insemination with chilled semen at 5 degrees C improves pregnancy and that the lambing obtained under these conditions is similar to the one obtained with cooled semen.  相似文献   

11.
Thirty-two Border Leicester x Scottish Blackface ewes that lambed in March were individually penned with their lambs from April 16th and given daily an oral dose of 3 mg melatonin at 1500 h (Group M). A further 32 acted as controls (Group C). Within each group half were used as embryo donors (Group D) following superovulation and half received embryos (Group R) following an induced estrus. Prior to weaning on 21 May ewes received ad libitum a complete diet providing 9 megajoules (MJ) of metabolizable energy and 125 g/kg crude protein. Thereafter each received 1.6 kg of the diet daily. In early June each ewe received an intravaginal device (300 mg progesterone) inserted for 12 d. Donors were superovulated with 4 i.m. injections of porcine FSH 12 h apart, commencing 24 h before progesterone withdrawal. Ovulation in recipients was induced with 800 IU PMSG injected i.m. at progesterone removal. Donor ewes were inseminated 52 h after progesterone withdrawal. Embryos were collected 4 d later and transferred to recipients. Melatonin suppressed plasma prolactin (P < 0.001) and advanced estrus (P < 0.05) and timing of the LH peak (P < 0.05). These events also occurred earlier in donors than in recipients (P < 0.01). Mean (+/- SEM) ovulation rates for melatonin-treated and control donors were 5.5 +/- 0.71 and 4.7 +/- 0.66, respectively (NS). Corresponding recipient values were 3.3 +/- 0.40 and 3.4 +/- 0.39 (NS). Mean (+/- SEM) embryo yields were 2.9 +/- 0.64 and 2.6 +/- 0.73 for melatonin-treated (n = 15) and control (n = 16) donors, respectively, and for the 12 ewes per treatment that supplied embryos, corresponding numbers classified as viable were 2.7 +/- 0.47 and 2.3 +/- 0.61 (NS). Following transfer, 57% of embryos developed to lambs when both donor and recipient received melatonin, 86% when only the donor received melatonin, 91% when only the recipient received melatonin, and 67% when neither received melatonin (NS). Thus, embryo survival following transfer was not improved by treating recipients with melatonin. Gestation length and lamb birthweights were unaffected by melatonin. Unlike nonpregnant control ewes, melatonin-treated recipients that failed to remain pregnant sustained estrous cyclicity following embryo transfer.  相似文献   

12.
The aim of this study was to assess the effect of production system and of cryopreservation of ovine embryos on their viability when transferred to recipients. The experimental design was an unbalanced 2 x 2 factorial design of two embryo production systems (in vivo versus in vitro) and two embryo preservation conditions prior to transfer (transferred fresh versus transferred after vitrification/warming). For the production of blastocysts in vivo, crossbred donor ewes (n=30) were synchronised using a 13-day intravaginal progestagen pessary. Ewes received 1500 IU equine chorionic gonadotropin (eCG) 2 days before pessary withdrawal, and were mated 2 days after pessary withdrawal and embryos were recovered surgically (6 days after mating). Blastocysts were produced in vitro (IVP) using standard techniques. Recipients (n=95) were synchronised using a progestagen pessary and received 500 IU eCG at pessary removal and were randomly assigned to receive (two per recipient) in vivo fresh (n=10), in vivo vitrified (n=10), in vitro fresh (n=35) or in vitro vitrified (n=40) blastocysts. Recipients were slaughtered at day 42 of gestation and foetuses recovered. Pregnancy and embryo survival rates were recorded and analysed using CATMOD procedures. Foetal weights and crown-rump lengths were recorded and analysed using generalised linear model (GLM) procedures. There were no statistically significant interactions between the effects of embryo production system and preservation status at transfer on pregnancy rate and embryo survival. The pregnancy rate following transfer of fresh IVP blastocysts was lower (P<0.07) than that of in vivo embryos (54.3% versus 90.0%, respectively). Vitrification resulted in a decrease in pregnancy rate, the effect being more pronounced in the case of IVP embryos (54.3-5.0%, P<0.001) compared with in vivo embryos (90.0-50.0%), although the absolute change was similar (49.3% versus 40.0%). Transfer of fresh IVP blastocysts resulted in a higher proportion of single (78.9% versus 33.3%) and lower proportion of twin (21.1% versus 66.7%) pregnancies than those produced in vivo. This was reflected in a significant difference in embryo survival rate (fresh: 32.8% versus 75.0%, P<0.01; vitrified: 2.5% versus 35.0%, P<0.001, for IVP and in vivo blastocysts, respectively). Similarly, all pregnancies resulting from the transfer of vitrified/warmed IVP blastocysts were single pregnancies, while 40% of those from vitrified/warmed in vivo blastocysts were twin pregnancies; this was reflected in an embryo survival rate of 35.0% versus 75.0%, respectively. There was a significant effect (P=0.0184) of litter size on foetal weight but not on foetal length (P=0.3304). Foetuses derived from the fresh transfer of IVP blastocysts were heavier (6.4+/-0.2g versus 5.8+/-0.2g, respectively, P<0.05) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.01) than those derived from fresh in vivo blastocysts. There was no difference in these parameters as a consequence of vitrification of IVP embryos. However, in vivo blastocysts subjected to vitrification resulted in heavier (6.6+/-0.3g versus 5.8+/-0.2g, respectively, P=0.055) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.05) foetuses than their counterparts transferred fresh.  相似文献   

13.
In Exp. 1, embryo survival rates of 45 and 47% were recorded after artificial insemination and ipsilateral transfer respectively. In Exp. 2, pregnancy rates of 62 and 60% were recorded after artificial insemination and contralateral transfer to inseminated recipients respectively. In this experiment the contralateral transferred embryo survival rate was 44%. Transferred embryo survival was lower overall when donors and recipients were out of phase by 1 day than when exactly synchronous.  相似文献   

14.
An interspecific embryo transfer program was conducted for genetic improvement and increasing the number of offspring from a flock of mouflon sheep in Argentina. The female donor mouflons were divided into three groups, G1 (n=5), G2 (n=4) and G3 (n=5). The total NIH-FSH-P1 dose given to each donor on the superovulatory treatment was 260, 200 and 160 mg for G1, G2 and G3, respectively. The mouflons in G3 were maidens, while the others were multiparous. Domestic Corriedale ewes (n=60) were synchronized and used as recipients. The embryo recovery and transfer was performed by a surgical method. Mouflons (n=13) responded to the superovulatory treatment with an average of 9.1+/-2.8 ovulations. A low incidence of early luteal regression was found (1 out of 14 donors). Embryo recovery rates were 60, 31 and 76% in groups G1, G2 and G3, respectively. The percentage of transferable embryos obtained in G1 and in G2 exceeded 80%. None of the embryos obtained from G3 were of transferable quality. In G1, 25 transferable embryos were recovered and transferred to 13 recipients, resulting in a pregnancy rate of 76.9% (10/13). In G2, 10 embryos were transferred to 5 recipients, resulting in a 60% pregnancy rate (3/5). Lambing rate was 60% (15/25) and 30% (3/10) for G1 and G2, respectively. Thirteen lambs were born to the 14 donors following natural service after the embryo recoveries. This study demonstrates that the application of IET technology would have great reproductive impact, especially when the donor mouflon hinds are selected according to age and reproductive history.  相似文献   

15.
This study was conducted to ascertain if sheep embryos collected for transfer can be stored for short periods without freezing to allow for international transport. Of twelve Finnish Landrace ewes treated with equine follicle stimulating hormone (FSH), eleven ewes ovulated with a mean of 9.1 +/- 4.3 (SD) corpora lutea. Recovery rate from the nine ewes with normal corpora lutea was 68 +/- 27%, providing 61 morulae which were then cooled to 4 C and stored for 24 h while transporting them from Scotland to France. Romanov recipients received either 4 (n = 14) or 5 (n = 1) of these morulae. Fourteen of the recipients lambed, with a mean lambing rate of 2.1 +/- 0.8, representing 48.3% of embryos transferred. Cooling of embryos to 4 C and storing them in ovum culture medium for 24 h at 4 C may be a valuable technique for the handling and short-term storage of embryos.  相似文献   

16.
A mucin coat is deposited on rabbit embryos during passage through the oviduct; rabbit blastocysts cultured from the 1-cell stage in vitro have no mucin coat. When cultured blastocysts are transferred to recipients, the lack of mucin coat might account in part for subsequent failure of pregnancy. We have investigated the possibility that mucin coat deposition is induced following transfer of in vitro 72 h-cultured blastocysts to oviducts of asynchronous or synchronous recipients. One-cell embryos were collected by flushing oviducts 19-20 h post-coitus and were cultured in vitro for 72 h until they reached the blastocyst stage. The blastocysts were transferred to the oviducts of recipients that were synchronized either with the donors (synchronous) or 1 day later than the donors (asynchronous). They were recovered after 24-48 h and the mucin coat thickness and embryo degeneration rate were measured. The degeneration rate of blastocysts recovered from uteri of synchronous recipients was higher than that from asynchronous recipients (72.2% vs 40.0%). The mucin coats around embryos recovered from oviducts of asynchronous recipients after 48 h were thicker than those from synchronous recipients. More asynchronous recipients were pregnant and gave birth to more pups than synchronous recipients. These results indicate that the oviducts of asynchronous recipients secreted more mucin around the transferred embryos, causing higher rates of implantation of the in vitro-cultured blastocysts.  相似文献   

17.
The results of embryo transfers from 130 donor Angora goats and 60 sheep of 3 breeds are presented, and the data analyzed to determine some of the sources of variation in success rate. Of all adult donor goats programmed, 94.9% yielded embryos suitable for transfer and 93.4% yielded offspring from the transfers. Donor ewes yielded percentages of 76.8 and 46.7, respectively. Fertilization failure and/or degeneration of embryos in donors prior to flushing accounted for the lower recoveries of viable embryos from sheep, the incidence of both being greater in donors with higher ovulation rates. High ovulation rate of donors also decreased percentage survival of sheep but not goat embryos after transfer. Stage of embryo development, site of transfer (oviduct vs. uterus) or number of embryos transferred (1 vs. 2) per recipient did not affect survival of sheep embryos following transfer to appropriately synchronized recipients. In goats, survival was significantly better with two than with one embryo transferred per recipient. Super-ovulation failure and poor fertilization limited the yield of embryos obtained from donor goats and sheep less than 1 year of age. These could be overcome to some extent by use of progestagen sponge rather than prostaglandin in the superovulation treatment regimen.  相似文献   

18.
Superovulation treatments and embryo transfer in Angora goats   总被引:17,自引:0,他引:17  
A high incidence of early luteal regression after PMSG superovulation was associated with low recovery of embryos from reproductive tracts of Angora goats flushed later than Day 5 after onset of oestrus. Embryos were successfully recovered (mean 7.9/female) by flushing on Days 2-5. Mean ovulation rate after an FSH regimen (16.1 +/- 0.8) was significantly higher than that after a single injection of PMSG (10.8 +/- 1.2). Fertilization rate and survival of embryos following transfer to naturally synchronized recipient feral goats did not differ between the two gonadotrophin regimens: the mean number of kids born to 47 donors treated with FSH (7.5 +/- 0.6) was significantly greater than that to 28 donors treated with PMSG (4.8 +/- 0.6). Irrespective of hormonal treatment, the numbers of embryos recovered and of kids born were correlated with ovulation rate (r = 0.82, P less than 0.001 for both). Embryo survival was influenced by ovulation rate in recipients, with 52%, 63% and 75% of transferred embryos being carried to term by recipients with 1,2 and 3 CL, respectively (P less than 0.01). More embryos survived (65%) when 2 embryos were transferred to each recipient than when 1 (51%) or 3 (48%) were transferred. In recipients receiving 2 embryos, survival was significantly improved by transfer of both embryos to the same oviduct (70%) than when one was transferred to each oviduct (62%). The percentage survival of embryos was optimal when oestrus of recipients was synchronized within +/- 1 day of oestrus in donors.  相似文献   

19.
In three experiments, the onset of oestrus, time of ovulation and lambing after intrauterine insemination with frozen-thawed semen were examined following synchronisation of oestrus using intravaginal progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG at sponge removal.

The number (and percentage) of ewes detected in oestrus 12, 24, 36, 48, 60 and 72 h after sponge removal was 1 (0.3), 2 (0.6), 17 (5.2), 120 (36.7), 65 (20.0) and 10 (3.1) respectively. One hundred and twelve ewes (34.3%) remained unmarked. Egg fertilisation rates were not different between ewes irrespective of time of onset of oestrus or whether or not ewes were marked.

The median time of ovulation with respect to sponge removal (with 95% fiducial limits) for ewes joined with vasectomised rams (10:1) at spronge removal (teased ewes) was 55.8 h (54.61–57.09) and for unteased ewes 59.7 h (58.27–61.12).

In the third experiment, a total of 394 ewes were inseminated by laparoscopy with frozen-thawed semen. The percentage of ewes lambing and lambs born per ewe inseminated, and number of lambs born per ewe lambing for inseminations 48, 60, 72 and 78 h after sponge removal were 45.9, 57.7 and 1.25; 55.1, 72.0 and 1.31; 57.4, 80.9 and 1.41; and 39.3, 60.7 and 1.54, and for 59 control ewes receiving fresh semen by cervical insemination 47.5, 69.5 and 1.46 respectively. The lambing data after insemination with frozen semen was not different to that of the controls. The percentage of ewes lambing and lambs born per ewe inseminated increased with time of insemination at 48, 60 and 72 h (linear, P < 0.01) but was lower for inseminations at 78 h after sponge removal. Number of lambs born per ewe lambing increased with time of insemination after sponge removal (linear, P < 0.05).  相似文献   


20.
Bovine oocytes matured in vitro were fertilized in high proportions (92% of matured oocytes) by sperm capacitated with Ca ionophore A23187. Eight percent of inseminated oocytes that were denuded 96 h after insemination developed to the morula stage when cultured for 6-120 h after insemination with cumulus cells from the original oocytes. Inseminated oocytes denuded 96 h after insemination developed to the blastocyst stage when cultured with or without cumulus cells or in the conditioned medium from 96 h to 168-216 h after insemination (9.0%, 8.1%, and 6.8% of inseminated oocytes respectively). Six frozen-thawed blastocysts were transferred nonsurgically to 3 recipients (2 embryos/recipient). Two of the 3 recipients became pregnant, with one delivering live twins at term. Seven fresh blastocysts were transferred nonsurgically to 6 recipients (1-2 embryos/recipient). Three of the 6 recipients became pregnant, with 2 delivering live calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号