首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Processes by which fecal bacteria enter overland flow and their transportation state to surface waters are poorly understood, making the effectiveness of measures designed to intercept this pathway, such as vegetated buffer strips, difficult to predict. Freshly made and aged (up to 30 days) cowpats were exposed to simulated rainfall, and samples of the cowpat material and runoff were collected. Escherichia coli in the runoff samples were separated into attached (to particles) and unattached fractions, and the unattached fraction was analyzed to determine if the cells were clumped. Within cowpats, E. coli grew for 6 to 14 days, rather than following a typical logarithmic die-off curve. E. coli numbers in the runoff correlated with numbers inside the cowpat. Most of the E. coli organisms eroded from the cowpats were transported as single cells, and only a small percentage (about 8%) attached to particles. The erosion of E. coli from cowpats and the state in which the cells were transported did not vary with time within a single rainfall event or over time as the cowpats aged and dried out. These findings indicate that cowpats can remain a significant source of E. coli in overland flow for more than 30 days. As well, most of the E. coli organisms eroded from cowpats will occur as readily transportable single cells.  相似文献   

2.
AIMS: To investigate the number of Escherichia coli in runoff derived directly from fresh cowpats and to determine if the E. coli are attached to dense particles, in flocs or as individual cells. METHODS AND RESULTS: Three cowpats were collected monthly from the same farm for 13 months and the number of E. coli in them estimated. A rainfall simulator was used to generate runoff from the individual cowpats, which was fractioned to determine the transported state of any E. coli present. The number of E. coli in the cowpat runoff was highly variable and was strongly correlated with the number of E. coli in the cowpat. Only a small percentage (approx. 8%) of the E. coli in runoff were attached to dense (>1.3 g ml(-1)) particles and there was no evidence of flocculation of the cells. CONCLUSIONS: Escherichia coli in runoff from cowpats are transported predominantly as individual cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Mitigation strategies to reduce the number of faecal bacteria in overland flow from agricultural land need to be designed to trap single bacterial cells.  相似文献   

3.
A laboratory-scale model system was developed to investigate the transport mechanisms involved in the horizontal movement of bacteria in overland flow across saturated soils. A suspension of Escherichia coli and bromide tracer was added to the model system, and the bromide concentration and number of attached and unattached E. coli cells in the overland flow were measured over time. Analysis of the breakthrough curves indicated that the E. coli and bromide were transported together, presumably by the same mechanism. This implied that the E. coli was transported by advection with the flowing water. Overland-flow transport of E. coli could be significantly reduced if the cells were preattached to large soil particles (>45 μm). However, when unattached cells were inoculated into the system, the E. coli appeared to attach predominantly to small particles (<2 μm) and hence remained unattenuated during transport. These results imply that in runoff generated by saturation-excess conditions, bacteria are rapidly transported across the surface and have little opportunity to interact with the soil matrix.  相似文献   

4.
A laboratory-scale model system was developed to investigate the transport mechanisms involved in the horizontal movement of bacteria in overland flow across saturated soils. A suspension of Escherichia coli and bromide tracer was added to the model system, and the bromide concentration and number of attached and unattached E. coli cells in the overland flow were measured over time. Analysis of the breakthrough curves indicated that the E. coli and bromide were transported together, presumably by the same mechanism. This implied that the E. coli was transported by advection with the flowing water. Overland-flow transport of E. coli could be significantly reduced if the cells were preattached to large soil particles (> 45 microm). However, when unattached cells were inoculated into the system, the E. coli appeared to attach predominantly to small particles (< 2 microm) and hence remained unattenuated during transport. These results imply that in runoff generated by saturation-excess conditions, bacteria are rapidly transported across the surface and have little opportunity to interact with the soil matrix.  相似文献   

5.
Aims: To determine the fate of Shiga toxin‐producing Escherichia coli (STEC) strains defecated onto alpine grassland soils. Methods and Results: During the summers of 2005 and 2006, the field survival of STEC was monitored in cowpats and underlying soils in four different alpine pasture units. A most probable number (MPN)‐PCR stx assay was used to enumerate STEC populations. STEC levels ranged between 3·9 and 5·4 log10 CFU g?1 in fresh cowpats and slowly decreased until their complete decay (inactivation rates k < 0·04 day?1). PFGE typing of STEC strains isolated from faecal and soil samples assessed the persistence of various clonal types for at least 2 months in cowpats and their vertical dispersal down through the soil at a depth up to at least 20 cm. STEC cells counts in soil were always below 2 log10 CFU g?1, regardless of the pasture unit investigated. The soil became rapidly free of detectable STEC once the cowpat had decomposed. The eight STEC strains isolated during this study belonged to six distinct serotypes and tested positive for the gene(s) stx2, including the stx2g and stx2 NV206 variants. Conclusions: STEC were able to persist in cowpats and disseminate down through the soil but were unable to establish. Significance and impact of the Study: This study provides useful information concerning the ecology of STEC in alpine pasture grasslands and may have implications for land and cattle management.  相似文献   

6.
Survival of a fecal coliform (Escherichia coli) and a fecal streptococcus (Streptococcus faecalis var. liquifaciens) was studied through several years at shaded and exposed outdoor soil plots. Death rates for both organisms were calculated for the different seasons at both sites. The 90% reduction times for the fecal coliform ranged from 3.3 days in summer to 13.4 days in autumn. For the fecal streptococcus, 90% reduction times were from 2.7 days in summer to 20.1 days in winter. During summer, the fecal coliform survived slightly longer than the fecal streptococcus; during autumn, survival was the same; and in spring and winter the fecal streptococcus survived much longer than the fecal coliform. Both organisms were isolated from storm-water runoff collected below a sampling site when counts were sufficiently high in soil. Isolation was more frequent during prolonged rains, lasting up to 10 days, than during short rain storms. There was evidence of aftergrowth of nonfecal coliforms in the soil as a result of temperature and rainfall variations. Such aftergrowth may contribute to variations in bacterial count of storm-water runoff which have no relation to the sanitary history of the drainage area.  相似文献   

7.
Ecological interactions among invasive species can affect not only the success of the invaders, but also their impact on ecosystems in the invaded range. In Australia, both dung beetles (subfamily Scarabaeinae) and cane toads (Rhinella marina) were introduced for biocontrol: the beetles to break down bovine faeces piles (cowpats) that otherwise accumulate and reduce pasture productivity, and the cane toad to consume scarab beetles that eat sugarcane and thus reduce sugar production. The dung beetles have been a success, whereas the toads have been a failure. Our experimental studies show that as well as impacting native fauna directly, cane toads reduce the rate of cowpat breakdown by consuming dung beetles. In the laboratory, dehydrated toads actively sought out cowpats based on scent cues, and in field enclosures, the presence of a cane toad significantly reduced rates of cowpat decomposition. Although toads have benefited from agricultural activities, their spread across Australia likely has reduced the effectiveness of one of the most successful biocontrol programmes ever conducted in that continent.  相似文献   

8.
The bacteria colonizing geologic core sections (attached) were contrasted with those found suspended in the groundwater (unattached) by examining the microbiology of 16 depth-paired core and groundwater samples using a suite of culture-independent and culture-dependent analyses. One hundred twenty-two meters was continuously cored from a buried chalcopyrite ore hosted in a biotite-quartz-monzonite porphyry at the Mineral Park Mine near Kingman, Ariz. Every fourth 1.5-m core was acquired using microbiologically defensible methods, and these core sections were aseptically processed for characterization of the attached bacteria. Groundwater samples containing unattached bacteria were collected from the uncased corehole at depth intervals corresponding to the individual cores using an inflatable straddle packer sampler. The groundwater was acidic (pH 2.8 to 5.0), with low levels of dissolved oxygen and high concentrations of sulfate and metals, including ferrous iron. Total numbers of attached cells were less than 105 cells g of core material−1 while unattached cells numbered about 105 cells ml of groundwater−1. Attached and unattached acidophilic heterotrophs were observed throughout the depth profile. In contrast, acidophilic chemolithotrophs were not found attached to the rock but were commonly observed in the groundwater. Attached communities were composed of low numbers (<40 CFU g−1) of neutrophilic heterotrophs that exhibited a high degree of morphologic diversity, while unattached communities contained higher numbers (ca. 103 CFU ml−1) of neutrophilic heterotrophs of limited diversity. Sulfate-reducing bacteria were restricted to the deepest samples of both core and groundwater. 16S ribosomal DNA sequence analysis of attached, acidophilic isolates indicated that organisms closely related to heterotrophic, acidophilic mesophiles such as Acidiphilium organovorum and, surprisingly, to the moderately thermophilic Alicyclobacillus acidocaldarius were present. The results indicate that viable (but possibly inactive) microorganisms were present in the buried ore and that there was substantial distinction in biomass and physiological capabilities between attached and unattached populations.  相似文献   

9.
The influence of nutrients in wastewater from dairy lagoons on the survival of Escherichia coli O157:H7 was monitored. Initially, the survival of E. coli O157:H7 in wastewater from which the competing native organisms had been removed by filter sterilization or autoclaving was compared with that in wastewater from which competing organisms had not been removed. Numbers of E. coli O157:H7 or E. coli ONT (O-nontypeable):H32 cells declined rapidly in filter-sterilized water and exhibited a slower decline in nonsterile water, while the organisms proliferated in autoclaved water. Subsequently, the growth of E. coli O157:H7 strains was monitored in 300 μl of Luria-Bertani (LB) broth supplemented with incremental proportions of filter-sterilized wastewater. E. coli O157:H7 and E. coli ONT:H32 strains failed to grow in filter-sterilized wastewater, and their growth was reduced incrementally with wastewater supplementation of LB broth. Consequently, the influence of organic extracts of wastewater on the growth of E. coli O157:H7 and E. coli ONT:H32 in reduced-strength LB was monitored, followed by scale-up tests in wastewater. Acidic and basic extracts inhibited growth of both strains, while the neutral aqueous extract improved growth. However, a scale-up with a threefold increase in the acidic components supplementing the wastewater did not result in any additional decline in numbers of E. coli O157:H7 cells. When protected inside a 300-kDa dialysis tube and exposed to diffusible components, E. coli O157:H7 survived longer, with a decimal reduction time of 18.1 days, compared to 3.5 days when inoculated directly into wastewater. Although wastewater can potentially provide nutrients to naturally occurring human pathogens, the chemical components, protozoa, and coliphages in wastewater can inhibit the growth of freshly introduced pathogens from manure.  相似文献   

10.
An immobilization scheme for bacterial cells is described, in which the antimicrobial peptide cecropin P1 was used to trap Escherichia coli K-12 and O157:H7 cells on microtiter plate well surfaces. Cecropin P1 was covalently attached to the well surfaces, and E. coli cells were allowed to bind to the peptide-coated surface. The immobilized cells were detected colorimetrically with an anti-E. coli antibody-horseradish peroxidase conjugate. Binding curves were obtained in which the signal intensities were dependent upon the cell concentration and upon the amount of peptide attached to the well surface. After normalization for the amount of peptide coupled to the surface and the relative binding affinity of the antibody for each strain, the binding data were compared, which indicated that there was a strong preference for E. coli O157:H7 over E. coli K-12. The cells could be immobilized reproducibly at pH values ranging from 5 to 10 and at ionic strengths up to 0.50 M.  相似文献   

11.
Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05) between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE) were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates) of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.  相似文献   

12.
Quantitative parameters of phagocytosis of fluorescein-labeled Escherichia coli cells by mouse peritoneal macrophages were studied using a fluorimetric method. E. coli cells were conjugated with fluoresceinisothiocyanate (FITC) and then incubated with macrophages. At the end of incubation, phagocytosis was stopped by the addition of a lysing solution (0.5% Triton X-100 in 0.01 M phosphate buffer in 0.15 M saline, pH 7.4). Trypan blue at a concentration of 0.04% was used as a quenching agent to differentiate between attached and ingested E. coli cells. It was shown that phagocytosis of E. coli cells depended on temperature and opsonization of bacteria. The number of E. coli cells ingested by macrophages increased rapidly for the initial 60 min of incubation at 37°C. To achieve optimal uptake of E. coli cells, their opsonization with 5% native serum was needed. The uptake of nonopsonized bacteria by macrophages was significantly lower than that of the opsonized ones (p < 0.05). Sodium azide was shown to produce a dose-dependent suppression of phagocytosis of E. coli cells by mouse peritoneal macrophages.  相似文献   

13.
Germ-free (GF)-ICR mice were shown to be less susceptible to oral inoculation with a pathogenic strain of Escherichia coli (E. coli 0115a, c: K(B)) than GF-CF#1 mice. In GF-CF#1 mice a large number of organisms were recovered from the intestinal wall from the cecum to the rectum 3 to 7 days after inoculation. Unlike those in GF-CF#1 mice, lesions in GF-ICR mice were localized in a part of the cecum and organisms were recovered only from the cecal wall and rarely from organs other than those of the alimentary tract. In both strains of mice, however, organisms were recovered in large number from the intestinal contents. Histopathology and immunofluorescence revealed organisms closely attached to the surface of the cecum, colon and rectal epithelia in GF-CF#1 mice but only in a part of the cecal epithelium in GF-ICR mice. After being in contact with conventional CF#1 mice for 21 days and then inoculated orally with the pathogenic E. coli, ex-GF-CF#1 mice died within 14 days with severe intestinal lesions, but ex-GF-ICR mice survived without lesions.  相似文献   

14.
Pathogen contamination of waterbodies, which is often identified by the presence of pathogen indicators such as Escherichia coli, is a major water quality concern in the United States. Reducing in-stream pathogen contamination requires an understanding of the combined impacts of land cover, climatic conditions, and anthropogenic activities at the watershed scale. In this study these factors are considered by assessing linear relationships between in-stream E. coli water quality data, watershed indexes, and rainfall for the Squaw Creek Watershed, IA, USA. The watershed indexes consider the undisturbed land cover which encompasses the natural land cover area, wetlands, and vegetated stream corridors, and the disturbed land cover extent which includes areas receiving manure from confined animal feeding operations (CAFOs), tile-drained areas, and areas in cropped and urban land. In addition to disturbed and undisturbed land, we also calculated indexes for barren land and slope. Bivariate analysis was used to assess the linkage between E. coli concentrations, watershed indexes and the cumulative rainfall 15, 30, 45, and 60 days prior to water sample collection. To predict in-stream E. coli concentrations, we developed multivariate regression models, and predictions were compared with observed E. coli concentrations at 46 sampling locations over four sampling periods in two years. Results show that areas receiving manure, wetlands, drained land, and cropped land all influence in-stream E. coli concentrations significantly (p < 0.001). The coefficient of determination was higher when indexes were corrected using the cumulative rainfall 30 days prior to the sampling event. Model skill varied from 0.29 to 0.55. More than 95% of the predictions across all spatial locations fall within one order of magnitude of the observed values. This Geographic Information System (GIS) based approach for predicting in-stream E. coli concentrations appears to be a useful technique for assessing the impacts of land management on water quality.  相似文献   

15.
Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.  相似文献   

16.
As an approach to inducible suppression of nonsense mutations in mammalian cells, we described recently an amber suppression system in mammalian cells dependent on coexpression of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) along with the E. coli glutamine-inserting amber suppressor tRNA. Here, we report on tetracycline-regulated expression of the E. coli GlnRS gene and, thereby, tetracycline-regulated suppression of amber codons in mammalian HeLa and COS-1 cells. The E. coli GlnRS coding sequence attached to a minimal mammalian cell promoter was placed downstream of seven tandem tetracycline operator sequences. Cotransfection of HeLa cell lines expressing a tetracycline transactivator protein, carrying a tetracycline repressor domain linked to part of a herpesvirus VP16 activation domain, with the E. coli GlnRS gene and the E. coli glutamine-inserting amber suppressor tRNA gene resulted in suppression of the amber codon in a reporter chloramphenicol acetyltransferase gene. The tetracycline transactivator-mediated expression of E. coli GlnRS was essentially completely blocked in HeLa or COS-1 cells grown in the presence of tetracycline. Concomitantly, both aminoacylation of the suppressor tRNA and suppression of the amber codon were reduced significantly in the presence of tetracycline.  相似文献   

17.
Two groups of calves were subjected to dietary stress by withholding of food beginning 1 or 14 days after inoculation with 1010 CFU of Escherichia coli O157:H7. Following treatment, neither group had a significant increase in fecal shedding of E. coli O157:H7. A third group of calves had food withheld for 48 h prior to inoculation with 107 CFU of E. coli O157:H7. These calves were more susceptible to infection and shed significantly more E. coli O157:H7 organisms than calves maintained on a normal diet.  相似文献   

18.
Rhizobial cells attached or unattached to soil particles were estimated. Nonsterile soils into which antibiotic-resistant mutants of Bradyrhizobium japonicum had been introduced were fractionated by a centrifugation technique into two fractions: A, which contained mainly rhizobial cells attached to soil particles, and F, which contained mainly rhizobial cells unattached to them. Rhizobial counts decreased in both fractions during incubation of the soil at 30°C, with a concomitant decrease in the proportion of the count of fraction F to that of fraction A. Sonication of fraction A of the soil incubated for more than 3 weeks caused an increase in the rhizobial count. The ratio of the count of fraction A estimated by the plant infection method to that estimated by the dilution plate method increased after 5 days of soil incubation. More than 90% of the indigenous rhizobia in an agricultural field existed in fraction A. These results suggest that the majority of rhizobial cells are attached to soil particles.  相似文献   

19.
Recent research has highlighted the occurrence of Escherichia coli in natural habitats not directly influenced by sewage inputs. Most studies on E. coli in recreational water typically focus on discernible sources (e.g., effluent discharge and runoff) and fall short of integrating riparian, nearshore, onshore, and outfall sources. An integrated “beachshed” approach that links E. coli inputs and interactions would be helpful to understand the difference between background loading and sewage pollution; to develop more accurate predictive models; and to understand the differences between potential, net, and apparent culturable E. coli. The objective of this study was to examine the interrelatedness of E. coli occurrence from various coastal watershed components along southern Lake Michigan. The study shows that once established in forest soil, E. coli can persist throughout the year, potentially acting as a continuous non-point source of E. coli to nearby streams. Year-round background stream loading of E. coli can influence beach water quality. E. coli is present in highly variable counts in beach sand to depths just below the water table and to distances at least 5 m inland from the shore, providing a large potential area of input to beach water. In summary, E. coli in the fluvial-lacustrine system may be stored in forest soils, sediments surrounding springs, bank seeps, stream margins and pools, foreshore sand, and surface groundwater. While rainfall events may increase E. coli counts in the foreshore sand and lake water, concentrations quickly decline to prerain concentrations. Onshore winds cause an increase in E. coli in shallow nearshore water, likely resulting from resuspension of E. coli-laden beach sand. When examining indicator bacteria source, flux, and context, the entire “beachshed” as a dynamic interacting system should be considered.  相似文献   

20.
Once released, manure-borne bacteria can enter runoff via interaction with the thin mixing layer near the soil surface. The objectives of this work were to document temporal changes in profile distributions of manure-borne Escherichia coli and enterococci in the near-surface soil layers after simulated rainfalls and to examine differences in survival of the two fecal indicator bacteria. Rainfall simulations were performed in triplicate on soil-filled boxes with grass cover and solid manure application for 1 h with rainfall depths of 30, 60, and 90 mm. Soil samples were collected weekly from depth ranges of 0 to 1, 1 to 2, 2 to 5, and 5 to 10 cm for 1 month. Rainfall intensity was found to have a significant impact on the initial concentrations of fecal indicator bacteria in the soil. While total numbers of enterococci rapidly declined over time, E. coli populations experienced initial growth with concentration increases of 4, 10, and 25 times the initial levels at rainfall treatment depths of 30, 60, and 90 mm, respectively. E. coli populations grew to the approximately the same level in all treatments. The 0- to 1-cm layer contained more indicator bacteria than the layers beneath it, and survival of indicator bacteria was better in this layer, with decimation times between 12 and 18 days after the first week of growth. The proportion of bacteria in the 0- to 1-cm layer grew with time as the total number of bacteria in the 0- to 10-cm layer declined. The results of this work indicate the need to revisit the bacterial survival patterns that are assumed in water quality models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号