首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermatozoa must undergo a number of reactions before they are able to fertilize the oocyte. Among these is the acrosome reaction, which is related to an increase in cytosolic Ca2+ concentration ([Ca2+]i). It has been reported in the literature that progesterone may achieve this effect through the intervention of extragenomic receptors. Nitric oxide (NO) has been reported to affect spermatozoa; the nature of the effect depends on the concentration of the radical. In a previous paper, we reported that the fusion of spermatozoa with prostasomes may also produce a transient increase in spermatozoa [Ca2+]i; in addition, this phenomenon causes a long-lasting effect that influences the action of progesterone. In this paper, we test the effects of a NO donor (CysNO) and of fusion of the prostasome to spermatozoa on progesterone-induced [Ca2+]i increase. No effect at all was noticed in the absence of progesterone stimulation. In the presence of the hormone, both CysNO and fusion increased the progesterone effect. This phenomenon was much more evident if the two treatments were used together. We conclude that both NO and fusion with prostasomes act on the progesterone-dependent pathway additively. Probably the effects are independent.  相似文献   

2.
Prostasomes are membranous vesicles (150-200 nm diameter) present in human semen. They are secreted by the prostate gland and contain large amounts of cholesterol, sphingomyelin and calcium, and some of their proteins are enzymes. Prostasomes are involved in a number of biological functions. In previous work, we discovered that prostasomes may fuse to sperm at neutral or at slightly acidic pH values. This mechanism may deliver calcium to sperm, thereby influencing sperm functions. We measured sperm [Ca2+]i with the fura-2 AM method and found that it increased after mixing prostasomes and sperm at pH values allowing fusion (pH 5-7). The increase of [Ca2+]i was proportional to the extent of fusion as measured through the relief of R18 self-quenching. We also examined the increase of sperm [Ca2+]i and the extent of fusion as a function of sperm to prostasome ratio and, also in this case, there was proportionality between the extent of fusion and the increase of [Ca2+]i that reached its maximal values in about 10-20 min. However, a detectable increase of [Ca2+]i was attained after 2 min of fusion. This would represent a new mechanism to influence sperm [Ca2+]i besides ion-exchange systems and ATP-dependent pumps. The value of [Ca2+]i remained elevated, unless Na+ was also present in the external medium. Therefore, the mechanism of fusion might influence deeply the physiology of sperm by producing a transient increase of [Ca2+]i.  相似文献   

3.
Fluorimetric studies on progesterone-induced [Ca(2+)](i) signalling in mammalian spermatozoa show both the well-characterised [Ca(2+)](i) transient and a subsequent sustained phase. However, the sustained phase is thought to reflect release of the fluorochrome during the acrosome reaction and has not been subject to critical investigation. We have used single-cell imaging of [Ca(2+)](i) to analyse the progesterone-induced [Ca(2+)](i) response in large numbers (>2000) of capacitated, human spermatozoa. In 70% of cells, treatment with progesterone induced a transient increase, which typically peaked within 1 min and decayed with a similar time course. Upon rapid application of progesterone this response peaked within 5-20 s. In 35% of progesterone-treated spermatozoa a sustained elevation of [Ca(2+)](i) occurred, which became discernible during the falling phase of the transient response and persisted for at least 20 min. Both [Ca(2+)](i) responses were localised to the postacrosomal region. Averaging of large numbers of single cell responses generated traces similar to those seen in fluorimetric studies. Although the sustained response was strongly associated with the initial, transient response, a few spermatozoa generated sustained responses that were not preceded by a significant transient response (5% of cells). It is concluded that a genuine biphasic [Ca(2+)](i) signal is activated by progesterone and that the sustained response is a discrete signalling event with biological significance.  相似文献   

4.
Prostasomes are membranous vesicles (150–200 nm diameter) present in human semen. They are secreted by the prostate gland and contain large amounts of cholesterol, sphingomyelin and Ca2+. In addition, some of their proteins are enzymes. Prostasomes enhance the motility of ejaculated sperm and are involved in a number of biological functions. In a previous work, we found that prostasome can fuse to spermatozoa at slightly acidic pH values, as demonstrated by the transfer of the lipophilic octadecylrhodamine probe. In this paper, we study the interactions of two leukocyte populations (polymorphonuclear and mononuclear) with prostasomes and find a pH-dependent adhesion (revealed by microscopic observation), but no fusion. These phenomena may be relevant for the functions of leukocytes in human reproduction.  相似文献   

5.
6.
The steroid progesterone, an agonist of acrosome reaction, induces a biphasic [Ca(2+)](i)-signal in human sperm comprising an initial transient [Ca(2+)](i) elevation, and a subsequent ramp or plateau. Nifedipine, an inhibitor of voltage-operated Ca(2+) channels, inhibits progesterone-induced acrosome reaction in human sperm, but fluorimetric studies have detected no effect of this compound on the progesterone-induced [Ca(2+)](i) signal. We have used single-cell imaging to study the effects of nifedipine on [Ca(2+)](i) signalling in human sperm. Analysis of mean responses from large numbers of cells showed that treatment with nifedipine reduced the duration but not the amplitude of the progesterone-induced [Ca(2+)](i) transient. In control cells, the latency of the transient peak (maximum fluorescence) fell within the range of 30-105 s. In the presence of nifedipine, very few cells peaked "late" (>60 s after application of progesterone). Analysis of transient responses in control cells revealed characteristic "early" and "late" responses, most cells showing both "early" and "late" transients, whereas "late" transients were rare and smaller in the presence of nifedipine. Sustained responses showed strong association with late transients, and occurrence and amplitude of sustained responses were significantly reduced in nifedipine pretreated cells.These findings are consistent with the occurrence of a discrete, nifedipine-sensitive component of the progesterone-induced [Ca(2+)](i) transient that peaks 1-2 min after exposure to the hormone and is crucial for the induction of the sustained [Ca(2+)](i) signal.  相似文献   

7.
Fusion of Human Sperm to Prostasomes at Acidic pH   总被引:9,自引:0,他引:9  
Prostasomes are membranous vesicles (150–200 nm diameter) present in human semen. They are secreted by the prostate and contain large amounts of cholesterol, sphingomyelin and Ca2+. In addition, some of their proteins are enzymes. Prostasomes enhance the motility of ejaculated spermatozoa and are involved in a number of additional biological functions. The possibility that they may fuse to sperm has never been proved. In this work, we studied the fusion of sperm to prostasomes by using various methods (relief of octadecyl Rhodamine B fluorescence self-quenching, fluorescence microscopy and flow cytometry) and we found that it occurs at acidic pH (4–5), but not at pH 7.5 pH-dependent fusion relies on the integrity of one or more proteins and is different from the Ca2+-stimulated fusion between rat liver liposomes and spermatozoa that does not require any protein and occurs at neutral pH. We think that the H+-dependent fusion of prostasomes to sperm may have physiological importance by modifying the lipid and protein pattern of sperm membranes. Received: 19 June 1996/Revised: 4 September 1996  相似文献   

8.
Boni R  Gualtieri R  Talevi R  Tosti E 《Theriogenology》2007,68(Z1):S156-S164
Ion currents and cytosolic free calcium ([Ca(2+)](i)) elevations are crucial events in triggering the complex machinery involved in both gamete maturation and fertilization. Oocyte maturation is triggered by hormone signaling which causes ion currents and [Ca(2+)](i) increase. Extracellular calcium seems to be required for meiosis progression since: (i) calcium depletion in the maturation medium severely affects oocyte developmental competence; (ii) the activity of plasma membrane L-type Ca(2+) currents decreases during maturation; (iii) the exposure to verapamil, a specific Ca(2+) channel blocker, decreases in vitro maturation efficiency. In spermatozoa, maturation initiates inside the epididymis and ends in the female genital tract. During their journey through the female reproductive tract, sperm undergo a dramatic selection and capacitation achieving fertilization competence. Adhesion to the tubal epithelium extends sperm life through depression of [Ca(2+)](i) until capacitation signals trigger an [Ca(2+)](i) elevation followed by sperm release. At fertilization, egg-sperm interaction evokes well-described transient and almost simultaneous events: i.e., fertilization current, a change in resting potential, and an increase in free [Ca(2+)](i) concentration. These events, termed oocyte activation, are the direct consequence of sperm interaction via either activation of a receptor or entry of a sperm factor. The latter hypothesis has been recently supported by the discovery of PCLzeta, a sperm-specific isozyme triggering a dramatic [Ca(2+)](i) increase via inositol 1,4,5-trisphosphate (IP(3)) production. The course of ion currents and [Ca(2+)](i) transients during maturation and fertilization plays a pivotal role in correct embryo development.  相似文献   

9.
Progesterone at 3 microM triggers a biphasic (transient and sustained) increase in intracellular calcium ([Ca(2+)](i)) in human sperm, which is believed to be a prerequisite for progesterone-induced acrosome reaction (AR). As very little is known about how AR occurrence, latency, and completion relate to the characteristics of the progesterone-induced [Ca(2+)](i) signal, we examined these events using fluorescence microscopy of individual living human sperm. Direct assessment of acrosomal status after calcium imaging showed no differences in kinetics or amplitude of the preceding progesterone-induced calcium responses in acrosome-reacted and acrosome-intact cells, which indicates that the amplitude of the [Ca(2+)](i) signal is not the critical determinant of AR. Chelation of extracellular calcium to arrest AR at varying times after progesterone stimulation revealed that maximal AR occurred immediately following progesterone stimulation, during the initial transient calcium influx rather than during the sustained calcium response. Attempts to follow acrosomal dispersal in real-time by staining with the acidic organelle probes LysoTracker DND-99 and dapoxyl (2-aminoethyl) sulphonamide (DAES) proved inconclusive due to heterogeneous labeling of the cell population. Surprisingly, the dye was often not confined to the acrosome but stained the whole sperm head, which suggests that only a subpopulation of human sperm cells contains a sufficiently acidic acrosome.  相似文献   

10.
We used patch clamp electrophysiology and concurrent imaging with the Ca(2+)-sensitive dye, fura-2, to study the temporal relationship between membrane capacitance and conductance and intracellular free Ca(2+) concentration ([Ca(2+)](i)) during mouse egg fertilization. We found an approximately 2 pF step increase in egg membrane capacitance and a minor increase in conductance with no change in [Ca(2+)](i) at sperm fusion. This was followed approximately 1 min later by a rise in [Ca(2+)](i) that led to larger changes in capacitance and conductance. The most common pattern for these later capacitance changes was an initial capacitance decrease, followed by a larger increase and eventual return to the approximate starting value. There was some variation in this pattern, and sub-microM peak [Ca(2+)](i) favored capacitance decrease, while higher [Ca(2+)](i) favored capacitance increase. The magnitude of accompanying conductance increases was variable and did not correlate well with peak [Ca(2+)](i). The intracellular introduction of porcine sperm factor reproduced the postfusion capacitance and conductance changes with a similar [Ca(2+)](i) dependence. Raising [Ca(2+)](i) by the intracellular introduction of IP(3) initiated fertilization-like capacitance changes, but the conductance changes were slower to activate. Capacitance decrease could be induced when [Ca(2+)](i) was increased modestly by activation of an endogenous Ca(2+) current, with little effect on resting conductance. These results suggest that net turnover of the mouse egg surface membrane is sensitive to [Ca(2+)](i) and that sperm and the active component of sperm factor may be doing more than initiating the IP(3)-mediated release of intracellular Ca(2+).  相似文献   

11.
Human spermatozoa stimulated with progesterone (a product of the cumulus and thus encountered by sperm prior to fertilization in vivo) apparently mobilize Ca(2+) and respond very differently according to the way in which the steroid is presented. A progesterone concentration ramp (0-3 microM) induces [Ca(2+)](i) oscillations (repetitive store mobilization) which modify flagellar beating, whereas bolus application of micromolar progesterone causes a single large transient (causing acrosome reaction) which is apparently dependent upon Ca(2+) influx. We have investigated Ca(2+)-mobilization and functional responses in human sperm exposed to 3 muM progesterone. The [Ca(2+)](i) response to progesterone was abolished by 4 min incubation in 0 Ca(2+) medium (2 mM EGTA) but in nominally Ca(2+)-free medium (no added Ca(2+); 0 EGTA) a smaller, slow response occurred. Single cell imaging showed a similar effect of nominally Ca(2+)-free medium and approximately 5% of cells generated a small transient even in the presence of EGTA. When cells were exposed to EGTA-containing saline (5 min) and then returned to nominally Ca(2+)-free medium before stimulation, the [Ca(2+)](i) transient was greatly delayed (approximately 50 s) and rise time was doubled in comparison to cells not subjected to EGTA pre-treatment. We conclude that mobilization of stored Ca(2+) contributes a 'slow' component to the progesterone-induced [Ca(2+)](i) transient and that incubation in EGTA-buffered saline is able rapidly to deplete this store. Analysis of flagellar activity induced by 3 muM progesterone showed an effect (modified beating) associated with the [Ca(2+)](i) transient, in >80% of cells bathed in nominally Ca(2+)-free medium. This was reduced greatly in cells subjected to 5 min EGTA pre-treatment. The store-mediated transient showed a pharmacological sensitivity similar to that of progesterone-induced [Ca(2+)](i) oscillations (consistent with filling of the store by an SPCA) suggesting that the transient induced by micromolar progesterone is a 'single shot' activation of the same store that generates Ca(2+) oscillations.  相似文献   

12.
Progesterone is present at micromolar concentrations in the cumulus matrix, which surrounds mammalian oocytes. Exposure of human spermatozoa to a concentration gradient of progesterone (0-3 microM) to simulate approach to the oocyte induced a slowly developing increase in [Ca(2+)](i) upon which, in many cells, slow oscillations were superimposed. [Ca(2+)](i) oscillations often started at very low progesterone (<10 nm), and their frequency did not change during the subsequent rise in concentration. Oscillations also occurred, but in a much smaller proportion of cells, in response to stepped application of progesterone (3 microM). When progesterone was removed, [Ca(2+)](i) oscillations often persisted or quickly resumed. Superfusion with low-Ca(2+) bathing medium (no added Ca(2+)) did not prevent [Ca(2+)](i) oscillations, but they could be abolished by addition of EGTA or La(3+). Inhibitors of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases or inositol trisphosphate signaling had no effect on [Ca(2+)](i) oscillations, but pharmacological manipulation of ryanodine receptors affected both their frequency and amplitude. Staining of live spermatozoa with BODIPY FL-X ryanodine showed localization of ryanodine binding primarily to the caudal part of the head and mid-piece. [Ca(2+)](i) oscillations did not induce acrosome reaction, but in cells generating oscillations, the flagellar beat mode alternated in synchrony with the oscillation cycle. Flagellar bending and lateral movement of the sperm head during [Ca(2+)](i) peaks were markedly increased compared with during [Ca(2+)](i) troughs. This alternating pattern of activity is likely to facilitate zona penetration. These observations show that progesterone initiates unusual and complex store-mediated [Ca(2+)](i) signaling in human spermatozoa and identify a previously unrecognized effect of progesterone in regulating sperm "behavior" during fertilization.  相似文献   

13.
Role of human prostasomes in the activation of spermatozoa   总被引:4,自引:0,他引:4  
Prostasomes are small vesicles of prostatic origin contained in human semen. Their composition is peculiar under many aspects. Cholesterol is abundant and many proteins are endowed with enzymatic or other activities. The function of prostasomes has been amply debated and several hypotheses have been put forward. The liquefaction of semen, spermatozoa motility, antibacterial activity and immunological functions have been related to prostasomes. Under certain aspects, prostasomes resemble synaptosomes. The fusion of prostasomes to spermatozoa enriches spermatozoa with cholesterol and causes bursts of cytoplasmic sperm calcium. The interaction of spermatozoa and prostasomes should be limited to vagina since prostasomes are immobile and do not follow spermatozoa in the superior female genital tract. Calcium bursts would increase spermatozoa motility, where cholesterol would decapacitate spermatozoa, so preventing untimely activation. Since spermatozoa receive many different molecules from prostasomes, additional effects are also possible. Prostasomes makes spermatozoa more apt to be activated by progesterone in the proximity of the ovum. Therefore, the fusion between spermatozoa and prostasomes would influence spermatozoa behaviour under many aspects and might be relevant for fecundation. The richness of molecular species in prostasomes is amazing and these small vesicles are expected to lead to many more discoveries in the field of human reproduction.  相似文献   

14.
Seminal plasma contains various types of extracellular vesicles, including ‘prostasomes’. Prostasomes are small vesicles secreted by prostatic epithelial cells that can be recruited by and fuse with sperm cells in response of progesterone that is released by oocyte surrounding cumulus cells. This delivers Ca2 + signaling tools that allow the sperm cell to gain hypermotility and undergo the acrosome reaction. Conditions for binding of prostasomes to sperm cells are however unclear. We found that classically used prostasome markers are in fact heterogeneously expressed on distinct populations of small and large vesicles in seminal plasma. To study interactions between prostasomes and spermatozoa we used the stallion as a model organism. A homogeneous population of ~ 60 nm prostasomes was first separated from larger vesicles and labeled with biotin. Binding of biotinylated prostasomes to individual live spermatozoa was then monitored by flow cytometry. Contrary to assumptions in the literature, we found that such highly purified prostasomes bound to live sperm only after capacitation had been initiated, and specifically at pH ≥ 7.5. Using fluorescence microscopy, we observed that prostasomes bound primarily to the head of live sperm. We propose that in vivo, prostasomes may bind to sperm cells in the uterus, to be carried in association with sperm cells into oviduct and to fuse with the sperm cell only during the final approach of the oocyte. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

15.
Evaluation of relative fertility of cryopreserved goat sperm   总被引:1,自引:0,他引:1  
This study was designed to compare differences in the in vivo fertility of cryopreserved goat semen assessed by heterospermic insemination with differences in in vitro analyses. Five groups of does were inseminated with mixed frozen-thawed semen from different pairs of bucks. The percentage of offspring sired by each buck in the pair was compared with the relative ability of spermatozoa from that frozen-thawed ejaculate to penetrate zona-free hamster ova, relative post-thaw acrosomal integrity, ability to undergo an acrosome reaction during in vitro capacitation, and assessments of sperm motility. In 4 of the 5 different insemination pairs, the ratio of offspring born was other than 1:1. Acrosomal integrity, ability of spermatozoa to undergo an acrosome reaction, and parameters of sperm motility were not correlated with differences in relative fertility in this experiment using ejaculates from fertile bucks. The ability of spermatozoa to fuse with the oocyte plasma membrane was highly correlated with relative in vivo fertility (R(2) = 0.78, P = 0.04). This suggests that fusion with the oocyte plasma membrane is an event in the fertilization process in which significant variation exists among fertile bucks. Assessment of ability of spermatozoa to fuse with zona-free hamster ova may contribute to analysis of post-thaw fertility of frozen-thawed buck semen.  相似文献   

16.
Generation of NO by nitric oxide synthase (NOS) is implicated in gamete interaction and fertilisation. Exposure of human spermatozoa to NO donors caused mobilisation of stored Ca(2+) by a mechanism that did not require activation of guanylate cyclase but was mimicked by S-nitroso-glutathione (GSNO; an S-nitrosylating agent). Application of dithiothreitol, to reduce protein -SNO groups, rapidly reversed the actions of NO and GSNO on [Ca(2+)](i). The effects of NO, GSNO and dithiothreitol on sperm protein S-nitrosylation, assessed using the biotin switch method, closely paralleled their actions on [Ca(2+)](i). Immunofluorescent staining revealed constitutive and inducible NOS in human oviduct and cumulus (the cellular layer investing the oocyte). 4,5-diaminofluorescein (DAF) staining demonstrated production of NO by these tissues. Incubation of human sperm with oviduct explants induced sperm protein S-nitrosylation resembling that induced by NO donors and GSNO. Progesterone (a product of cumulus cells) also mobilises stored Ca(2+) in human sperm. Pre-treatment of sperm with NO greatly enhanced the effect of progesterone on [Ca(2+)](i), resulting in a prolonged increase in flagellar excursion. We conclude that NO regulates mobilisation of stored Ca(2+) in human sperm by protein S-nitrosylation, that this action is synergistic with that of progesterone and that this synergism is potentially highly significant in gamete interactions leading to fertilisation.  相似文献   

17.
Lai JN  Wang OY  Lin VH  Liao CF  Tarng DC  Chien EJ 《Steroids》2012,77(10):1017-1024
Progesterone is an endogenous immunomodulator that is able to suppress T cell activation during pregnancy. An increased intracellular free calcium concentration ([Ca(2+)](i)), acidification, and an inhibition of Na(+)/H(+)-exchange 1 (NHE1) are associated with this progesterone rapid non-genomic response that involves plasma membrane sites. Such acidification, when induced by phytohemagglutinin, is calcium dependent in PKC down-regulated T cells. We investigated the relationship between this rapid response involving the [Ca(2+)](i) increase and various membrane progesterone receptors (mPRs). In addition, we explored whether the induction of acidification in T cells by progesterone is a direct result of the [Ca(2+)](i) increase. The results show that the intracellular calcium elevation caused by progesterone is inhibited by SKF96365, U73122, and 2-APB, but not by pertussis toxin or U73343. The elevation is enhanced by the protein tyrosine kinase inhibitor staurosporine and the protein kinase C inhibitors Ro318220 and Go6983. These findings suggest that progesterone does not stimulate the [Ca(2+)](i) increase via the Gi coupled mPR(α). Furthermore, progesterone-induced acidification was found to be dependent on Ca(2+) entry and blocked by the inorganic channel blocker, Ni(2+). However, BAPTA, an intracellular calcium chelator, was found to prevent progesterone-induced acidification but not the inhibition of NHE1. This implies that acidification by progesterone is a direct result of the [Ca(2+)](i) increase and does not directly involve NHE1. Taken together, further investigations are needed to explore whether one or more mPRs or PGRMC1 are involved in bringing about the T cell rapid response that results in the [Ca(2+)](i) increase and inhibition of NHE1.  相似文献   

18.
Prostasomes are particular lipid vesicles secreted by the human prostate and found in the semen. No specific action has yet been attributed to prostasomes, but they appear to act at various levels. For example, prostasomes enhance sperm motility in vitro and participate in the immunomodulation properties of seminal plasma. Excessive production of reactive oxygen species (ROS) in human semen has a negative influence on the functional capacities of spermatozoa. The presence of leukocytes in semen is associated with increased production of ROS that can be harmful to sperm cells, under certain conditions. Previous results tend to suggest a possible role of prostasomes on ROS production in human semen. After reviewing the literature concerning the structural and functional characteristics of prostasomes and the role of ROS in human semen, we report our results concerning the influence of prostasomes on ROS production and the consequences on semen. We have demonstrated that prostasomes exert an antioxidant function in human semen. This function is effective both on polymorphonuclear neutrophils and on sperm cells. The mechanism of action of prostasomes is unusual, as they act on ROS production mainly on the plasma membranes of neutrophils. They induce a decrease of NADPH-oxidase activity associated with rigidification of the plasma membrane. Prostasomes protect the functional capacities of spermatozoa during an oxidative stress created by the presence of NADPH in the incubation medium.  相似文献   

19.
The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.  相似文献   

20.
Calcium influx is required for the mammalian sperm acrosome reaction (AR), an exocytotic event occurring in the sperm head prior to fertilization. We show here that thapsigargin, a highly specific inhibitor of the microsomal Ca(2+)-Mg(2+)-ATPase (Ca(2+) pump), can initiate acrosomal exocytosis in capacitated bovine and ram spermatozoa. Initiation of acrosomal exocytosis by thapsigargin requires an influx of Ca(2+), since incubation of cells in the absence of added Ca(2+) or in the presence of the calcium channel blocker, La(3+), completely inhibited thapsigargin-induced acrosomal exocytosis. ATP-Dependent calcium accumulation into nonmitochondrial stores was detected in permeabilized sperm in the presence of ATP and mitochondrial uncoupler. This activity was inhibited by thapsigargin. Thapsigargin elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)), and this increase was inhibited when extracellular Ca(2+) was chelated by EGTA, indicating that this rise in Ca(2+) is derived from the external medium. This rise of [Ca(2+)](i) took place first in the head and later in the midpiece of the spermatozoon. However, immunostaining using a polyclonal antibody directed against the purified inositol 1,4,5-tris-phosphate receptor (IP(3)-R) identified specific staining in the acrosome region, in the postacrosome, and along the tail, but not in the midpiece region. No staining in the acrosome region was observed in sperm without acrosome, indicating that the acrosome cap was stained in intact sperm. The presence of IP(3)-R in the anterior acrosomal region as well as the induction, by thapsigargin, of intracellular Ca(2+) elevation in the acrosomal region and acrosomal exocytosis, implicates the acrosome as a potential cellular Ca(2+) store. We suggest here that the cytosolic Ca(2+) is actively transported into the acrosome by an ATP-dependent, thapsigargin-sensitive Ca(2+) pump and that the accumulated Ca(2+) is released from the acrosome via an IP(3)-gated calcium channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号