首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S ummary . Observations on the growth of virulent and attenuated strains of Corynebacterium ovis on solid and liquid media, together with quantitative differences in the amount of easily extractable lipid from two of these strains, support the hypothesis that surface lipids are concerned with pathogenicity and virulence of C. ovis. Attenuation was not accompanied by loss of a toxic principle contained in the crude lipid.  相似文献   

2.
The effect of growth temperature on the loss of virulence of the fish pathogen Aeromonas salmonicida was investigated. Three virulent strains were grown in Trypticase soy broth at temperatures ranging from 22 to 30 degrees C. Growth at a higher-than-optimal temperature (26 to 27 degrees C for the three strains studied) resulted in the selection of spontaneous attenuated derivatives in the initial bacterial population. For example, virulent bacteria represented less than 10% of the population of a culture grown at 30 degrees C, and attenuated derivatives were easily isolated by streaking the culture on solid medium and picking single colonies. Virulent strains autoaggregated during growth and possessed a cell wall layer (A-layer) external to the outer membrane, as previously described. Attenuated strains did not autoaggregate and did not possess the A-layer. The A-layer apparently shielded bacteriophage receptors and a mannose-specific yeast agglutinin located in the outer membrane. Thus, virulent strains exhibited impaired adsorption of phages, whereas attenuated strains were phage sensitive. Furthermore, attenuated strains agglutinated yeast cells but virulent strains did not. The attenuated strains had higher maximum growth temperatures than their virulent parent strains, and this accounts for their selection at high temperatures. It is proposed that the A-layer contributes significantly to the physical properties of the A. salmonicida cell envelope and that these physical properties of the A. salmonicida cell envelope and that these physical change upon loss of the A-layer to permit growth at a higher-than-usual temperature.  相似文献   

3.
Virulent strains of Aeromonas salmonicida observed by electron microscopy were characterized by an outer layer exhibiting a tetragonal repeat pattern. Attenuated strains had a 2.5 X 10(3)- to 5 X 10(3)-fold reduction in virulence and lost the outer layer, autoaggregating properties, and a 49-kilodalton protein (A protein) simultaneously. The A protein is the major protein component of outer membrane fractions of virulent strains. A variety of radiolabeling studies showed that this protein was surface localized and that it provided an effective barrier against iodination of other outer membrane proteins with either lactoperoxidase or diazoiodosulfanilic acid; A protein was not labeled with lactoperoxidase but was specifically labeled with diazoidosulfanilic acid. The A protein was purified by selective extraction with detergent and guanidine hydrochloride, and its amino acid composition was determined. The properties of A protein are compared with those of other bacterial surface layer proteins.  相似文献   

4.
The structure of the cyst wall of the heliozoon Echinosphaerium nucleofilum has been investigated using light microscopy, scanning and transmission electron microscopy, and X-ray microanalysis. The cyst wall is a composite structure of seven or eight layers. These are: an enveloping gelatinous layer; a layer of siliceous spheroidal bodies; an electron-dense supporting membrane; a broad electron-lucent zone; an electron-dense layer; a layer of helicoidally packed material; and one or two layers with a granular appearance lying next to the plasma membrane of the encysted organism. The structure of the cyst wall closely resembles that of Actinophrys sol, confirming the close relationship of these actinophryid heliozoa while emphasizing their distinctiveness from other amoeboid protista.  相似文献   

5.
Cryptococcus neoformans grown in the parasitic state was observed by the freeze-etching technique and was compared with that grown on culture media. Unlike other yeasts, this organism grown in vivo is very often devoid of the "ordinary" invaginations. The membrane of the cell grown in vivo was almost free from concavity and convexity except for many round depressions which represent the surface view of paramural bodies. Some of the paramural bodies were found to be multivesicular systems. Most were spherical invaginations containing a single vesicle or its ghost remaining after secretion of the vesicles. In clear contrast to the cell grown in vitro, the in vivo cell contained a great number of vesicles in the cytoplasm. These seemed to show high-secretion activity in C. neoformans grown in the parasitic state. On transfer from in vitro to in vivo, this organism enlarged the cell wall, capsule, and cell body. The appearance of a large vacuole, accumulation of storage organelles, and the existence of rodlike structures, seemingly lipid deposits, were also noted in the cytoplasm of the cell grown in vivo. the meaning of these results as well as the mode of capsular production are discussed.  相似文献   

6.
Bacterial cell surface layers (S-layers) which show a crystalline structure, defined pores, and a regular arrangement of functioal groups can be used for production of isoporous ultrafiltration membranes and as a matrix for immobilization of macromolecules. S-layer-carrying cell wall fragments from thermophilic Bacillaceae possess an extremely thin peptidoglycan-containing layer with pores larger than those in the S-layer lattice. Thus, they can directly be used for biotechnological applications, when an S-layer protein pool is stored in the rigid cell wall layer which is released during cell wall preparation, forming an inner S-layer. In the present study, a synthetic medium for Bacillus stearothermophilus PV 72 was developed by applying the pulse and shift technique with the aim to produce cell wall fragments with before-mentioned properties by varying the growth conditions in condtinuous culture. The organism was grown at 57 degrees C in a bioreactor with 1 L working volume equipped with exhaust gas analysis and connected to a PC-based process control system. Biomass concentration was 2.2 g/L out of 8 g/L glucose at a dilution rate of 0.3 h(-1), giving a biomass productivity of 0.66 g/L h. Although the organism was grown under different conditions, no change in peptidoglycan composition, extent of peptidoglycan crosslinking, and content of secondary cell wall polymers was observed. The amount of S-layer protein pool stored in the rigid cell wall layer and the autolytic activity depended mainly on the specific growth rate. Cell wall fragments with properties required for ultrafiltration membrane production could be produced by parameter settings in continuous culture. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Cryptococcus neoformans grown on culture media was observed by the freeze-etching technique. In the capsule, short fibrils were seen when freezeetched. This organism was unique in the appearance of the cell wall, which showed two strata. The outer one was dense with particles of about 20 nm in diameter, whereas the inner one was sparse in particles. The appearance of the cell membrane of this organism differed distinctly depending on the culture media. When grown on glycerol medium, the cell membrane possessed, as do other yeasts, clear but somewhat longer and curved invaginations. The membrane of cells grown on nonglycerol medium exhibited, however, only a few invaginations of irregular shape. Instead, characteristically of this organism, the cell membrane showed round depressions of 40 to 200 nm in diameter which were the surface view of the paramural bodies. In cross-fractured cells, both types of paramural bodies were found. Some of them contained a single vesicle of about 50 nm in diameter. These seem to play a role in secreting the cytoplasmic vesicles. Data suggesting the existence of multivesicular bodies in the cytoplasm and multivesicular lomasomes were also obtained. Some of the baglike paramural bodies showed multilayered membrane. These are thought to be plasmalemmasomes. This organism was similar to other yeasts reported in other respects.  相似文献   

8.
A number of features not described previously has been revealed in electron-microscope studies of mature chlamydospores of Fusarium oxysporum. On the maturation of one isolate, many spores formed a thick matrix-like layer containing electron-dense particles on the exterior surface of the spore wall. In thin sections of mature chlamydospores of the same isolate, cisternae of endoplasmic reticulum surrounding, and in close apposition to, the limiting boundary of the lipid bodies were revealed. The germination of chlamydospores was accompanied by (a) the rapid appearance of polysaccharide deposits and changes in the configuration of some subcellular organelles, (b) the formation of a new wall layer between the plasma membrane and the innermost layer of the spore wall, (c) the rupture of the outermost coats of the spore wall, and (d) the emergence of the germ tube as an extension of the new wall layer.  相似文献   

9.
Chlamydomonas monoica Strehlow is being developed as a model for genetic analysis of zygospore morphogenesis, and many relevant mutant strains are available. To provide the basis for interpreting the ultrastructural phenotypes of zygospore mutants, an analysis of wall morphogenesis in wildtype zygospores of C. monoica was undertaken. Following synthesis of a thick, fibrous, primary zygote wall, granular material accumulated between the plasma membrane and the primary zygote wall and aggregated into a repetitive array of electron-opaque fibrous stripes. A new wall layer, the outer layer of the secondary zygospore wall, first appeared as segments with a fibrous outer surface overlying a well-defined band of electron-translucent material. These segments gave rise to an intact sheath adjacent to the plasma membrane. Beneath this sheath, electron-opaque material (forming the inner layer of the secondary zygospore wall) accumulated unevenly and forced the surface sheath to undulate, creating a pattern of peaks and valleys that was exposed to the external environment 4 rupture and release of the primary zygote wall. The zygospore wall included material resistant to degradation by potassium hydroxide, 2-aminoethanol, and acetolysis, but it was destroyed by exposure to chromic acid. These characteristics, in combination with the autofluorescence of untreated zygospore walls and their failure to stain with phloroglucinol, suggest that sporopollenin may be responsible for many of the resistant properties associated with the mature zygospore of Chlamydomonas.  相似文献   

10.
Ultrastructure of the Membrane System in Lactobacillus plantarum   总被引:6,自引:4,他引:2       下载免费PDF全文
Electron microscopic study of Lactobacillus plantarum revealed mesosomes in different stages of maturation and structural relation with other cell organelles. Small, immature mesosomes were bounded by a prominent electron-dense layer with another extremely faint layer on the outside. This corresponds to the appearance of the cytoplasmic membrane. Large mature mesosomes were surrounded by a triple-layered unit membrane having electron-opaque layers of approximately equal density, suggesting that the composition of the boundary membrane alters during development of this structure. Three-dimensional observations derived from serial sections indicated that mesosomes always maintain a connection between the cytoplasmic membrane and the comparable layers of their boundary. The cytoplasmic membrane also consisted of a triple-layered unit membrane, the innermost layer of which was less electron-opaque and was usually hidden by the relatively dense background of the cytoplasm. The innermost layer of the cytoplasmic membrane was most clearly seen in plasmolyzed cells. Only mature mesosomes made distinct contacts with, or were partially immersed in, the nucleoplasm. The boundary of such mesosomes frequently seemed to be discontinuous, suggesting that the mesosome interior was in direct contact with the nucleoplasm. Mesosomes involved in cross-wall formation at a division plane increased in size and passed through a sequence of positions which led ultimately to an association with the nucleoplasms of the daughter cells. The inner surface of the cell wall was lined by a thin, electron-dense layer whose composition and function are unknown. Under the cultural conditions used, this organism regularly contained a polyphosphate granule.  相似文献   

11.
A supported lipid bilayer membrane (s-BLMs) formed on a freshly cleaved metallic surface by the Tien method was applied for the design of an electrochemical sensor for detection of neutral odorant molecules. The lipid bilayer was modified by saturation with fullerene C60, which possesses electron mediator properties and facilitates a redox reaction occurring at the border of the lipid membrane and metal surface. I2/I and ferrocenyl trimethyl bromide were used as electroactive marker ions. The smell compounds adsorb on the surface of the lipid layer and change its structure. As a consequence the ratio of marker ion penetration to the lipid membrane is altered. The magnitude of these changes depends on the amount and chemical structure of adsorbed molecules. The research presented was carried out by cyclic voltammetry. The magnitude of the electrochemical signal generated by smell compounds was correlated with other parameters describing their molecular properties such as: octanol/water partition coefficients and dipole moments.  相似文献   

12.
Vibrio vulnificus is a marine bacterium associated with both primary septicemias and wound infections in humans. The lipopolysaccharides of a virulent and an avirulent strain of Vibrio vulnificus were compared with respect to their chemical constituents and electrophoretic characteristics. 2-Keto-3-deoxyoctonic acid, a normal constituent of the lipopolysaccharide of typical Enterobacteriaceae, was not found in the lipopolysaccharide of either strain. Hexadecenoate (C16:1) was the predominant fatty acid of the lipid A moiety of the lipopolysaccharides and of the membrane phospholipids of both strains. Hydroxy fatty acids composed 44% of the total fatty acids of the lipid A of the avirulent and 40% of those in the virulent strain. In addition, odd-numbered fatty acids were detected in both lipopolysaccharides. The electrophoretic profile was similar for both strains, but demonstrated no "ladder-like" pattern characteristic of "smooth" lipopolysaccharides. The result of this study showed no significant differences between the lipopolysaccharides of the virulent and avirulent strains of Vibrio vulnificus. The possible role for lipopolysaccharide in pathogenesis of Vibrio vulnificus infections is discussed.  相似文献   

13.
Studies on the interaction of snake venom and organized lipid interfaces have been conducted using a variety of systems, including BLMs, SUVs and GUVs. The present study was undertaken to elucidate how the plastic properties (namely, its microviscosity, thickness, permeability) of model membranes from native lipids of different tissues of rats change in the course of Macrovipera lebetina obtusa (MLO), Montivipera raddei (MR) and Naja kaouthia (NK) venoms processing. The presence of viper venom in organism leads to increasing of the electrical resistance of BLMs from liver and muscle lipids approximately on a sequence, while the BLMs from brain lipids have not shown noticeable differences of plastic properties compared to the control. Giant unilamellar vesicles (GUVs) with a mean diameter of 30μm have a minimum curvature and mimic cell membranes in this respect. Snake venom was added to the sample chamber before the vesicles were formed. The membrane fluorescence probes, ANS and pyrene, were used to assess the state of the membrane and specifically mark the phospholipid domains. Fluorescent spectra were acquired on a Varian fluorometer instrument. ANS and pyrene allow us to quantify the fluidity changes in the membrane by measuring of the fluorescence intensity. The presence of viper venom in GUVs media reveals a noticeable decreasing of membrane fluidity compared to the control, while the binding of fluorophores with GUVs modified by venom leads to the appearance of channel activity. These studies also emphasize the importance of a membrane surface curvature for its interaction with enzymatic components of venom.  相似文献   

14.
15.
The simple tubular heart of tunicates consists of a single layer of striated muscle cells which display distinct electrical properties at the luminal and extraluminal surfaces. We have investigated heart morphogenesis and cytodifferentiation in the ascidian, Botryllus schlosseri. Myocardium is formed by invagination from the wall of the heart primordium. Cell polarity is clearly apparent in the undifferentiated cells of the heart primordium and is maintained throughout the whole course of cardiac muscle differentiation. Myocardium cells are initially cubic in appearance, then undergo a progressive flattening with the formation of characteristic protrusions at the luminal surface. The first sign of muscle cell differentiation is the formation of close associations between sarcoplasmic reticulum cisterns and the plasma membrane at the luminal and junctional surface. Myofibrillogenesis also occurs near the luminal surface, whereas the cell portion facing the pericardial cavity maintains an undifferentiated structure. The findings support the hypothesis that membrane changes precede and influence myofibril formation in developing muscle cells.  相似文献   

16.
Structure of Escherichia coli After Freeze-Etching   总被引:33,自引:25,他引:8       下载免费PDF全文
Survival of Escherichia coli, quick-frozen under conditions similar to those employed for freeze-etching, is close to 100%. For determination of cell shrinkage, the diameters of freeze-etched E. coli cells (average, 0.99 mum) were compared with those of preparations after negative staining and after ultrathin sectioning. Negatively stained cells measured from 0.65 to 1.0 mum in diameter, and ultrathin sections showed average cell diameters of 0.70 mum. Freeze-etched replicas of logarithmically growing, as well as stationary, E. coli B cells revealed a smooth, finely pitted cell surface in contrast to cell surfaces seen with other preparative methods. The frozen cell wall may cleave in two planes, exposing (i) a smooth fracture face within the lipid layer and (ii) in rare instances an ill-defined particulate layer. Most frequently, however, cleavage of the envelope occurred between wall and protoplasmic membrane; large areas of the membrane were then exposed and showed a surface studded with predominantly spherical particles, an appearance which did not significantly change when the cells were fixed in formaldehyde and osmium tetroxide before freeze-etching. The distribution of these particles differed between logarithmically growing cells and stationary cells.  相似文献   

17.
Endovesicles induced in human erythrocytes by octaethyleneglycol dodecylether (C12E8) were studied by confocal laser scanning microscopy, using fluorescein isothiocyanate dextran as a nonspecific fluid marker. The endovesicles appeared to consist mainly of a ring-formed toroidal part joined with a central flat membrane segment. The torocyte contour length was several microm. There was usually one torocyte endovesicle per cell. The endovesicles seemed to be located near the cell surface. In sections of C12E8-treated erythrocytes transmission electron microscopy revealed the frequent occurrence of flat membrane structures with a bulby periphery, which apparently are cross sections of torocyte endovesicles. The possible physical mechanisms leading to the observed torocyte endovesicle shape are discussed. The torocyte endovesicles seem to be formed in a process in which an initially stomatocytic invagination loses volume while maintaining a large surface area. Because intercalation of C12E8 in the erythrocyte membrane induces inward membrane bending (stomatocytosis) we assume that C12E8 is preferentially located in the inner lipid layer of the erythrocyte membrane, i.e., in the outer lipid layer of the endovesicle membrane. It is suggested that local disturbances of the lipid molecules in the vicinity of the C12E8 molecules in the outer lipid layer of the endovesicle membrane form membrane inclusions with the effective shape of an inverted truncated cone. If the interaction between the inclusion and the membrane is weak, the membrane of such an endovesicle can be characterized by its negative spontaneous curvature, which may lead to a torocyte endovesicle shape with a small relative volume. Effects of a possible strong interaction between the C12E8-induced membrane inclusions and the membrane on the stability of the torocyte endovesicles are also indicated.  相似文献   

18.
In an attempt to elucidate the relation between Micrococcus cryophilus, Neisseria caviae, Neisseria ovis, and Branhamella catarrhalis, fractions derived from outer membranes of a strain of each organism were examined for protein composition by SDS - polyacrylamide gel electrophoresis. Micrococcus cryophilus outer membrane protein showed extensive similarities to that of N. ovis and contained a heat-modifiable protein which behaved almost identically with the corresponding bands previously shown to exist in N. caviae and N. ovis. Branhamella catarrhalis protein was distinctly different from those of M. cryophilus and the two 'false neisserias' N. caviae and N. ovis.  相似文献   

19.
Up to 10 glycolipids were detected in F. tularensis with the use of thin-layer chromatographic techniques. These glycolipids were slime antigens of F. tularensis membrane. Attenuated F. tularensis strains were found to have defects in their glycolipid composition: in the vaccine strain glycolipid 8 was replaced by more polar lipid 8-a; the avirulent strain had only two glycolipids, and one of them was not typical for virulent strains. Considering that glycolipids differed from entero-bacterial Vi-antigen in their physical-chemical and biological properties, the suggestion was made that the use of the symbol "Vi" to denote the surface substances of F. tularensis should be abolished.  相似文献   

20.
Lipids of Paramecium   总被引:1,自引:0,他引:1  
This review is the first on the composition and metabolism of Paramecium lipids. This ciliated protozoa is a useful system for studying the structure and function of biomembranes since it can be grown under chemically defined culture conditions in large numbers; much is known about its genetics, membrane electrophysiology, and ultrastructure; and mutants with defective membrane functions are available which are reported to have lipid alterations. Pure preparation of the cell surface ciliary membrane are readily isolated. The organism and its ciliary membrane contain a variety of polar lipids, sterols, and steryl esters. The polar lipids include substantial amounts of ether lipids, sphingolipids, and phosphonolipids. the biosyntheses of fatty acids and specific moieties of complex lipids in this organism are beginning to be examined with promises of elucidating biosynthetic mechanisms that are more difficult to study in other organisms. More information on lipid metabolism is required to identify the bases for the defects in putative lipid/membrane mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号