首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of Ca2+ and Gd3+ ions with Ca(2+)-transporting ATPase of the sarcoplasmic reticulum (SR-ATPase) was analyzed. Binding of Ca2+ to the transport site caused an enhancement of intrinsic fluorescence of SR-ATPase. Gd3+ also induced fluorescence enhancement. However, the effects of Ca2+ and Gd3+ were additive rather than competitive, indicating that the Gd(3+)-binding site responsible for this enhancement is distinct from the Ca(2+)-transport site. Gd3+ ions at concentrations higher than 10 microM caused a marked fluorescence quenching, indicating an additional interaction at low-affinity binding sites. Interaction of Ca2+ with the transport site led to a quenching of fluorescence of N-(1-anilinonaphthyl-4)maleimide (ANM) covalently attached at SHN [as defined in Yasuoka-Yabe, K. & Kawakita, M. (1983) J. Biochem. 94, 665-675]. In this case the effects of Ca2+ and Gd3+ were mutually exclusive, indicating that Ca2+ and Gd3+ were competing for the same binding site (i.e. the transport site) to affect ANM fluorescence. Competition between Ca2+ and Gd3+ for the Ca(2+)-transport site was also demonstrated by direct measurement of Ca(2+)-binding using nitrocellulose membrane filters. Affinity of Gd3+ for the Ca(2+)-transport site was a little lower than that of Ca2+. Based on these results it was concluded that Gd3+ has at least three kinds of binding sites on SR-ATPase, namely the Ca(2+)-transport site, the Gd(3+)-specific high-affinity site, and a number of low-affinity sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Gd3+ binding sites on the purified Ca(2+)-ATPase of sarcoplasmic reticulum were characterized at 2 and 6 degrees C and pH 7.0 under conditions in which 45Ca2+ and 54Mn2+ specifically labeled the calcium transport site and the catalytic site of the enzyme, respectively. We detected several classes of Gd3+ binding sites that affected enzyme function: (a) Gd3+ exchanged with 54Mn2+ of the 54MnATP complex bound at the catalytic site. This permitted slow phosphorylation of the enzyme when two Ca2+ ions were bound at the transport site. The Gd3+ ion bound at the catalytic site inhibited decomposition of the ADP-sensitive phosphoenzyme. (b) High-affinity binding of Gd3+ to site(s) distinct from both the transport site and the catalytic site inhibited the decomposition of the ADP-sensitive phosphoenzyme. (c) Gd3+ enhanced 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence in NBD-modified enzyme by probably binding to the Mg2+ site that is distinct from both the transport site and the catalytic site. (d) Gd3+ inhibited high-affinity binding of 45Ca2+ to the transport site not by directly competing with Ca2+ for the transport site but by occupying site(s) other than the transport site. This conclusion was based mainly on the result of kinetic analysis of displacement of the enzyme-bound 45Ca2+ ions by Gd3+ and vice versa, and the inability of Gd3+ to phosphorylate the enzyme under conditions in which GdATP served as a substrate. These results strongly suggest that Ln3+ ions cannot be used as probes to structurally and functionally characterize the calcium transport site on the Ca(2+)-ATPase.  相似文献   

3.
The effects of cardiotoxin on the ATPase activity and Ca2+-transport of guinea pig erythrocyte and rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase (E.C.3.6.1.3) were investigated. Erythrocyte (Ca2+ + Mg2+)-ATPase was inhibited by cardiotoxin in a time- and dose-dependent fashion and inhibition appears to be irreversible. Micromolar calcium prevented this inhibitory effect. Specificity for (Ca2+ + Mg2+)-ATPase inhibition by cardiotoxin was indicated since a homologous neurotoxin had no effect. Cardiotoxin did not affect (Ca2+ + Mg2+)-ATPase activity from sarcoplasmic reticulum, but Ca2+-transport was 50% inhibited. This inhibition was not due to an increased Ca2+-efflux and could be the result of an intramolecular uncoupling of ATPase activity from Ca2+-transport. Inhibition of Ca2+-transport by cardiotoxin could not be prevented by millimolar concentrations of Ca2+. It is suggested that the biological effects of cardiotoxin could be a consequence of inhibition of plasma membrane (Ca2+ + Mg2+)-ATPases.  相似文献   

4.
Adenosinetriphosphopyridoxal (AP3PL) specifically modifies Lys684 of Ca2(+)-ATPase of sarcoplasmic reticulum (SR-ATPase) in the presence of Ca2+, leading to its inactivation (Yamamoto, H. et al. (1988) J. Biochem. 103, 452-457). We have now investigated the effects of AP3PL on SR-ATPase in the absence of Ca2+. Similarly to its action in the presence of Ca2+, AP3PL inhibited the Ca2(+)-transporting activity in a dose-dependent manner in the absence of Ca2+ as well. ATP and ADP protected SR-ATPase against inactivation by this reagent. One mole of AP3PL was bound per mol of SR-ATPase with concomitant loss of the Ca2(+)-transporting activity. Binding of AP3PL to SR-ATPase was prevented by ATP. AP3PL-labeled SR membranes were digested with thermolysin and labeled thermolytic peptides were purified through C18 reversed-phase HPLC. Two major AP3PL-labeled peptides were obtained in approximately 1:1 ratio; one was an octapeptide corresponding to 679-ValGluProSerHisLys*SerLys-686, and the other, a nonapeptide corresponding to 487-PheSerArgAspSerLys*ArgMetSer-495 (Lys* indicates a labeled Lys residue) of SR-ATPase. Lys684 in the former turned out to be the same as the highly specific target of AP3PL in the presence of Ca2+ which was identified previously. The target site specificity of AP3PL thus changed significantly but not entirely on binding of Ca2+ to SR-ATPase. This indicates that the spatial arrangement around the gamma-phosphoryl group of the bound ATP is affected by Ca2+ ions bound at the transport site. It is also likely that Lys492 and Lys684 are situated close together in the ATP binding site of SR-ATPase.  相似文献   

5.
The 2',3'-dialdehyde ATP analog (oATP) was synthesized and its ability to activate the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum via the adenosine-nucleotide-binding site was investigated. After reduction by sodium borohydride, oATP binds covalently to the catalytic adenosine-nucleotide-binding site of the enzyme, resulting in 85% loss of acetyl-phosphate-driven Ca2+ uptake and ATP-hydrolysing ability. In the absence of a reducing agent, oATP serves as a substrate for the Ca(2+)-ATPase, as indicated by Pi formation (hydrolysis) and Ca(2+)-uptake ability. oATP binding to the intact light sarcoplasmic reticulum is observed in the absence and presence of the competitive adenosine nucleotide inhibitor, fluorescein isothiocyanate with apparent affinity constants of 1.2 mM and 2.2 mM, respectively. Autoradiography of tryptic fragments from partially purified Ca(2+)-ATPase labeled with [alpha-32P]oATP or [gamma-32P]oATP locates the covalent binding site to the A1 fragment, even in the fluorescein-isothiocyanate-labeled pump protein. With high probability, a lysine residue in the tryptic A1 fragment is labeled by the ribose-modified ATP analog close to the phosphorylation site at Asp351.  相似文献   

6.
B Vilsen  J P Andersen 《FEBS letters》1992,306(2-3):213-218
The cDNA encoding a Ca(2+)-transport ATPase of frog (Rana esculenta) skeletal muscle was isolated and characterized. The deduced amino acid sequence, consisting of 994 residues, showed 89% identity to the fast twitch muscle sarcoplasmic reticulum Ca(2+)-ATPases of chicken and rabbit. Northern blot analysis using a fragment of this cDNA as probe detected a 5.0 kb message in frog skeletal muscle but did not detect any mRNA encoding sarcoplasmic reticulum Ca(2+)-ATPase in frog cardiac muscle. The enzymatic properties of the amphibian skeletal muscle Ca(2+)-ATPase were compared with those of the rabbit fast twitch muscle Ca(2+)-ATPase by functional expression of the cDNAs in COS-1 cells. The amphibian Ca(2+)-ATPase displayed a reduced apparent affinity for Ca2+ and an increased apparent affinity for the inhibitors, vanadate and thapsigargin, relative to the mammalian enzyme. This may be explained by a mechanism in which relatively more of the E2 conformation accumulated in the frog Ca(2+)-ATPase than in the mammalian enzyme.  相似文献   

7.
The influence of phospholipid environment upon the mobility of spin labels covalently bound to the Ca2+-transport ATPase (ATP phosphohydrolase [EC 3.6.1.3]) was studied by electron spin resonance spectroscopy in native and reconstituted sarcoplasmic reticulum membranes. Fragmented sarcoplasmic reticulum of rabbit skeletal muscle was covalently labeled with maleimide spin-labels of different chain length or with 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidinooxyl, and the phospholipids were exchanged for dipalmitoylphosphatidylcholine or dioleoylphosphatidylcholine. With short-chain maleimide or iodoacetamide spin labels, the spectrum of the protein-bound label reflected the change in microenvironment caused by replacement of endogenous phospholipids with dipalmitoylphosphatidylcholine as a decrease in mobility. In contrast, after labeling with long-chain maleimide derivatives, there were no noticeable differences in the spectra before and after substitution with dipalmitophatidylcholine. Replacement of endogenous phospholipids with dioleoylphosphatidylcholine did not affect the spectra. The data indicate that increased viscosity in the environment of Ca2+-transport ATPase produced by replacement of sarcoplasmic reticulum lipids with dipalmitoylphosphatidylcholine reduces the mobility of short-chain maleimide spin labels covalently attached to the Ca2+-transport ATPase polypeptide.  相似文献   

8.
Interaction between Gd3+ and Tb3+ ions and Ca2+,Mg2+-ATPase of sarcoplasmic reticulum was studied. Three classes of lanthanide-ion binding sites with different affinities were distinguished. Binding of Gd3+ to the site with the highest affinity seemed to occur at less than 10(-6)M free Gd3+ and resulted in severe inhibition of ATPase activity. The reaction rates of both E-P formation and decomposition in the forward direction were inhibited in parallel with this binding, whereas ADP-dependent decay of E-P in the backward direction was not. At these Gd3+ concentrations, Ca2+-binding to the transport site was not inhibited. Binding of Gd3+ and Tb3+ to the Ca2+-transport site did occur, but more than 10(-5)M free Gd3+ or Tb3+ was required for effective competition with Ca2+ for that site. Gd3+ bound to the transport site in place of Ca2+ did not activate the E-P intermediate formation. Addition of 10(-1)M Tb3+ to a suspension of sarcoplasmic reticulum membranes resulted in marked enhancement of Tb3+ fluorescence, which is due to an energy transfer from aromatic amino acid residues of ATPase to Tb3+ ions bound to the low affinity site of the enzyme. Gd3+ and Mn2+ competed with Tb3+ for that site, but Ca2+, Zn2+, and Cd2+ did not.  相似文献   

9.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

10.
Monoclonal antibodies raised against canine cardiac sarcoplasmic reticulum phospholamban were used to study the structure-function relationship between phospholamban and the sarcoplasmic reticulum (SR) (Ca(2+)-Mg2+)-ATPase (Suzuki, T., and Wang, J. H. (1986) J. Biol. Chem. 261, 7018-7023). Additional monoclonal antibodies are characterized further. When five of these monoclonal antibodies were assessed for their ability to affect SR Ca2+ uptake three of these antibodies had no effect on SR Ca2+ uptake, whereas the other two monoclonals were able to stimulate SR Ca2+ uptake to levels similar to those caused by phosphorylation of phospholamban at different calcium concentrations. Using synthetic peptides corresponding to various portions of phospholamban in a competitive binding assay, it was possible to map the epitope site of monoclonals which stimulate the (Ca(2+)-Mg2+)-ATPase activity to phospholamban residues 7-16. These results implicate phospholamban residues 7-16 in the regulation of the (Ca(2+)-Mg2+)-ATPase.  相似文献   

11.
Adenosine triphosphopyridoxal (AP3PL) was used as an affinity label directed toward the ATP binding site of the Ca2+-transporting ATPase of the rabbit skeletal muscle sarcoplasmic reticulum (SR). The reagent inhibited the ATPase activity competitively with ATP, Ki = 20 microM. Incubation of SR membranes with 100 microM AP3PL followed by treatment with NaBH4 resulted in 90% inactivation of the E-P forming activity as well as of the Ca2+-transporting activity. Adenosine di- and tetraphosphopyridoxals had similar but less pronounced effects on the Ca2+-transport system. AP3PL was bound to ATPase in a one-to-one stoichiometry in parallel with the loss of the enzymatic activities. ATP and ADP prevented the binding of AP3PL and thereby protected the enzyme from inactivation. The SR membranes were labeled with [3H]AP3PL and then digested with thermolysin in order to identify the attachment site of the affinity label. A 3H-labeled peptide (Val-Glu-Pro-Ser-His-Lys* 684-Ser-Lys) was purified to homogeneity by Sephadex LH-20 chromatography and C18-reversed phase HPLC (Lys* denotes the binding site of [3H]AP3PL). These results indicate that the SR-ATPase peptide is folded in such a manner that Lys684 and Asp351, the phosphorylation site, are located very close to each other, since the distance between the 4-formyl group reacting with Lys684 and the gamma-phosphoryl group of the ATP moiety of AP3PL is rather small.  相似文献   

12.
Phenylglyoxal (PGO) was used as a reagent for chemical modification of the ATP-binding site of Ca2+-transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum (SR-ATPase). When 1 mM PGO was reacted with SR-ATPase at 30°C at pH 8.5, PGO was bound to the ATPase molecule in two-to-one stoichiometry with concomitant loss of activity of the ATPase to form the phosphorylated intermediate (E-P). ATP and ADP prevented the binding of PGO and thereby protected the enzyme from inactivation. The SR membranes were labeled with [14C]PGO and then digested with pepsin to identify the attachment site of PGO. A 14C-labeled peptide (402lle-Arg*-Ser-Gly-Gln406) was purified to homogeneity by C18-reversed phase HPLC (Arg* denotes the binding site of [14C]PGO). These results indicate that Arg403 is located in the ATP binding site of the SR-ATPase.  相似文献   

13.
Rabbit muscle sarcoplasmic reticulum Ca2+-ATPase has been shown to bind gadolinium ion (Gd3+) at two high affinity Ca2+ sites (Stephens, E. M., and Grisham, C. M. (1979) Biochemistry 18, 4876-4885). Gd3+ bound at these sites exhibits an unusually long electron spin relaxation time, consistent with occlusion of these sites and reduced contact with solvent H2O. In this report, the nature of the Gd3+ sites was examined in preparations of the enzyme solubilized with the detergent C12E8. The frequency dependence of water proton relaxation in solutions containing the solubilized Ca2+-ATPase yields dipolar correlation times, tau c, for the 1H-Gd3+ interaction of 1.04 X 10(-9) s for Gd3+ bound at site 1 and 1.98 X 10(-9) s for Gd3+ bound at site 2. The correlation time itself is frequency dependent below 30 MHz, indicating that the correlation time is dominated by the electron spin relaxation time of bound Gd3+. The long values of the correlation time found in the present study are consistent with a poor accessibility of these Gd3+ sites (particularly site 2) to solvent water molecules. Analytical ultracentrifugation and molecular sieve high performance liquid chromatography indicated that the active fraction of the soluble Ca2+-ATPase was monomeric. Thus occlusion of the Ca2+ sites in this enzyme is largely dependent on the tertiary structure of the monomeric ATPase and does not appear to depend on multimeric membrane structures.  相似文献   

14.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

15.
The beta, gamma-bidentate chromium(III) complex of ATP (CrATP) was used as a substrate analog to stabilize a form of the Ca(2+)-ATPase of the sarcoplasmic reticulum containing both of the bound calcium ions in an occluded state without enzyme phosphorylation. The kinetics of dissociation of Ca2+ from the occlusion sites in the CrATP-enzyme complex were consistent with the existence of two nonequivalent and interdependent Ca2+ occlusion sites, both in the membranous Ca(2+)-ATPase and in a detergent-solubilized monomeric Ca(2+)-ATPase preparation. The rate constant for release of the first calcium ion was k1 = 0.99 h-1, whereas the second calcium ion was released with a rate constant of k2 = 0.25 h-1 when the first site was empty and with a rate constant of k3 = 0.13 h-1 when the first site was occupied by Ca2+. Ca2+ binding at the first site occurred with a rate constant of k-1 = 0.96 microM-1 h-1 (apparent Kd = 1.0 microM). The Ca(2+)-occluded state was further stabilized by ADP, binding in exchange with ATP with an apparent Kd of 8.6 microM. Two kinetic classes of CrATP-binding sites were observed, each with a stoichiometry of 3-4 nmol/mg of protein; but only the fast phase of CrATP binding was associated with Ca2+ occlusion. Derivatization of the Ca(2+)-ATPase with N-cyclohexyl-N'-(4-dimethylamino-1-naphthyl)carbodimide resulted in inactivation of phosphorylation of the enzyme from MgATP, whereas the ability to occlude Ca2+ in the presence of CrATP was retained, albeit with a reduced apparent affinity for Ca2+.  相似文献   

16.
Stimulation of a Ca(2+)-induced Ca(2+)-release channel from skeletal muscle sarcoplasmic reticulum by various adenosine(5')oligophospho(5')adenosines (ApnA, n = 2-6) by a rapid quenching technique using radioactive calcium was studied. Ap4A, Ap5A and Ap6A, as well as adenosine 5'-[beta, gamma-methylene]triphosphate (AdoPP [CH2]P), a non-hydrolyzable ATP analogue, stimulated the Ca(2+)-release channel, whereas Ap2A and Ap3A had no effect. At a concentration of 0.5 mM, the order of stimulation was AdoPP[CH2]P less than Ap4A less than Ap5A much less than Ap6A. As well as having the highest affinity (0.44 mM for half-maximal stimulation), Ap6A showed an extraordinarily high Hill coefficient of 3.3 (1.9 for AdoPP[CH2]P, 2.1 for Ap5A). The stimulating effect of Ap6A was reversible, yet its dissociation proceeded very slowly. Stimulation of Ca2+ release by Ap6A was counteracted by Mg2+ and ruthenium red. A 2',3'-dialdehyde derivative of Ap6A, which is a chemical probe for amino groups, stimulated irreversibly the Ca(2+)-release channel and modified some high-molecular-mass sarcoplasmic reticulum proteins, possibly including the channel protein. Our data suggest that Ap6A stimulates the Ca2+ channel by binding to the activation site of the channel subunit and simultaneously preventing the spontaneous decay of the Ca2+ channel by keeping together two of the four channel subunits by bridging them with its two adenosine groups.  相似文献   

17.
(1) Sulfhydryl reactivity and electron spin resonance spectra of nitroxide maleimide spin labels, covalently attached to sarcoplasmic reticulum ATPase, were examined on both detergent-solubilized and membranous material. Monomeric and oligomeric ATPases were prepared by the use of dodecyloctaethylene glycol monoether as a solubilizing detergent. (2) Immediately after solubilization, the reaction curve of nonomeric ATPase with 5,5'-dithiobis(2-nitrobenzoate) was characterized by positive cooperativity (S-shaped as a function of time). In contrast, the SH reactivity of both oligomeric and membranous ATPases obeyed usual first-order kinetics and could be analyzed in terms of three classes of reactive site. All enzymatically active ATPase preparations responded to addition of ADP with a decrease in SH reactivity. During enzymatic inactivation of monomeric ATPase, the SH-modification rate was dramatically enhanced with loss of cooperative features. Ca2+ removal from the high-affinity sites stimulated SH reactivity before inactivation had taken place. (3) ESR spectroscopy indicated less motional constraints on monomeric than on oligomeric and membranous ATPases. Arrhenius plots of ESR spectral parameters suggest a conformational transition in both membranous and solubilized ATPases at about 22 degrees C. The transition was also present in EGTA-, but not in heat-inactivated ATPase. Although SH reactivity of monomeric ATPase was dramatically enhanced by EGTA inactivation, the results of ESR, circular dichroism and analytical ultracentrifugation experiments indicate limited conformational changes induced by EGTA treatment. (4) The data indicate marked differences in the properties of monomeric ATPase on the one hand and oligomeric and membranous enzymes on the other hand. They are consistent with previous functional evidence for the presence of ATPase in an associated state in the membrane (M?ller, J.V., Lind, K.E. and Andersen, J.P. (1980) J. Biol. Chem. 255, 1912-1920).  相似文献   

18.
The involvement of membrane protein in dystrophic chicken fragmented sarcoplasmic reticulum alterations has been examined. A purified preparation of the (Ca2+ + Mg2+)-ATPase protein from dystrophic fragmented sarcoplasmic reticulum was found to have a reduced calcium-sensitive ATPase activity and phosphoenzyme level, in agreement with alterations found in dystrophic chicken fragmented sarcoplasmic reticulum. An amino acid analysis of the ATPase preparations showed no difference in the normal and dystrophic (Ca2+ + Mg2+)-ATPase. The (Ca2+ + Mg2+)-ATPase was investigated further by isoelectric focusing and proteolytic digestion of the fragmented sarcoplasmic reticulum. Neither of these methods indicated any alteration in the composition of the dystrophic (Ca2+ + Mg2+)-ATPase. We have concluded that the alterations observed in dystrophic fragmented sarcoplasmic reticulum are not due to increased amounts of non-(Ca2+ + Mg2+)-ATPase protein, and that the normal and dystrophic (Ca2+ + Mg2+)-ATPase protein are not detectably different.  相似文献   

19.
The CaATPase of skeletal muscle sarcoplasmic reticulum was specifically labeled in the ATP binding site with fluorescein isothiocyanate under gentle conditions (pH 7 X 5). Fluorescence energy transfer from the attached fluorescein to Nd3+ indicated that a cation binding site was about 1 X 0 nm away from the fluorescein. Thus it appears that the ATP site includes a cation binding site. At 25 degrees C in 0 X 5 M KCl, the association constants for Nd3+, Ca2+ and Mg2+ were 3 X 3 X 10(5) M-1, 84 M-1 and 35 M-1, respectively, making it possible that, in vivo, the site binds Mg2+.  相似文献   

20.
S Matsushita  L Dux  D Pette 《FEBS letters》1991,294(3):203-206
Chronic low-frequency stimulation elicits in rabbit fast-twitch muscle a partial inactivation of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase and Ca(2+)-uptake activities. Inactive Ca(2+)-ATPase was enriched in a light microsomal fraction by sucrose density gradient centrifugation after calcium oxalate loading in the presence of ATP. This fraction showed a reduced specific activity and phosphoprotein formation of the Ca(2+)-transport ATPase. These results suggest that the inactivation of the Ca(2+)-ATPase as induced by increased contractile activity, is confined to a specific SR vesicle population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号