首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
3.
Control of expression of the vaccinia virus thymidine kinase gene.   总被引:18,自引:13,他引:5       下载免费PDF全文
mRNA extracted from vaccinia virus-infected cells early after infection directs cell-free synthesis of enzymatically active viral thymidine kinase (Hruby and Ball, Virology, in press). We used this assay for a specific vaccinia virus mRNA to study the induction and repression of the viral thymidine kinase gene during infection of thymidine kinase-deficient L-cells. As observed previously by other workers, the synthesis of thymidine kinase occurred immediately after infection but was switched off after 4 h later. We observed similar kinetics of accumulation and shutoff under conditions where viral DNA synthesis and late gene expression were inhibited. Cell-free translation of mRNA from infected cells showed that the concentration of functional message for viral thymidine kinase reached a peak 3 to 4 h after infection and then decreased with a half-life of about 1 h. These kinetics indicated that significant levels of thymidine kinase mRNA persisted in cells which had stopped synthesizing the enzyme. Under conditions where late gene expression was inhibited, high concentrations of functional mRNA could be isolated from cells at late times after infection. On the basis of these results, we conclude that the repression of thymidine kinase expression is mediated at the translational level by one or more early or delayed early viral genes. Repression is accompanied by, but does not depend on, the inactivation or degradation of thymidine kinase mRNA, which is a late gene function.  相似文献   

4.
5.
6.
Derepression of a novel class of vaccinia virus genes upon DNA replication   总被引:17,自引:2,他引:15  
  相似文献   

7.
Vaccinia virus produces late mRNAs by discontinuous synthesis   总被引:29,自引:0,他引:29  
We describe the unusual structure of a vaccinia virus late mRNA. In these molecules, the protein-coding sequences of a major late structural polypeptide are preceded by long leader RNAs, which in some cases are thousands of nucleotides long. These sequences map to different regions of the viral genome and in one instance are separated from the late gene by more than 100 kb of DNA. Moreover, the leader sequences map either upstream or downstream of the late gene, are transcribed from either DNA strand, and are fused to the late gene coding sequence via a poly(A) stretch. This demonstrates that vaccinia virus produces late mRNAs by tagging the protein-coding sequences onto the 3' end of other RNAs.  相似文献   

8.
The antibiotic G418 was shown to be an effective inhibitor of vaccinia virus replication when an appropriate concentration of it was added to cell monolayers 48 h before infection. Genetic engineering techniques were used in concert with DNA transfection protocols to construct vaccinia virus recombinants containing the neomycin resistance gene (neo) from transposon Tn5. These recombinants contained the neo gene linked in either the correct or incorrect orientation relative to the vaccinia virus 7.5-kilodalton gene promoter which is expressed constitutively throughout the course of infection. The vaccinia virus recombinant containing the chimeric neo gene in the proper orientation was able to grow and form plaques in the presence of G418, whereas both the wild-type and the recombinant virus with the neo gene in the opposite polarity were inhibited by more than 98%. The effect of G418 on virus growth may be mediated at least in part by selective inhibition of the synthesis of a subset of late viral proteins. These results are discussed with reference to using this system, the conferral of resistance to G418 with neo as a positive selectable marker, to facilitate constructing vaccinia virus recombinants which contain foreign genes of interest.  相似文献   

9.
10.
The vaccinia virus A22R gene encodes a protein that is homologous to the bacterial enzyme RuvC and specifically cleaves and resolves four-way DNA Holliday junctions into linear duplex products. To investigate the role of the vaccinia virus Holliday junction resolvase during an infection, we constructed two recombinant viruses: vA22-HA, which has a short C-terminal epitope tag appended to the A22R open reading frame, and vA22i, in which the original A22R gene is deleted and replaced by an inducible copy. Polyacrylamide gel electrophoresis and Western blot analysis of extracts and purified virions from cells infected with vA22-HA revealed that the resolvase was expressed after the onset of DNA replication and incorporated into virion cores. vA22i exhibited a conditional replication defect. In the absence of an inducer, (i) viral protein synthesis was unaffected, (ii) late-stage viral DNA replication was reduced, (iii) most of the newly synthesized viral DNA remained in a branched or concatemeric form that caused it to be trapped at the application site during pulsed-field gel electrophoresis, (iv) cleavage of concatemer junctions was inhibited, and (v) virion morphogenesis was arrested at an immature stage. These data indicated multiple roles for the vaccinia virus Holliday junction resolvase in the replication and processing of viral DNA into unit-length genomes.  相似文献   

11.
12.
13.
The Chinese hamster ovary (CHO) cell line is nonpermissive for vaccinia virus, and translation of viral intermediate genes was reported to be blocked (A. Ramsey-Ewing and B. Moss, Virology 206:984-993, 1995). However, cells are readily killed by vaccinia virus. A vaccinia virus-resistant CHO mutant, VV5-4, was isolated by retroviral insertional mutagenesis. Parental CHO cells, upon infection with vaccinia virus, die within 2 to 3 days, whereas VV5-4 cells preferentially survive this cytotoxic effect. The survival phenotype of VV5-4 is partial and in inverse correlation with the multiplicity of infection used. In addition, viral infection fails to shut off host protein synthesis in VV5-4. VV5-4 was used to study the relationship of progression of the virus life cycle and cell fate. We found that in parental CHO cells, vaccinia virus proceeds through expression of viral early genes, uncoating, viral DNA replication, and expression of intermediate and late promoters. In contrast, we detect only expression of early genes and uncoating in VV5-4 cells, whereas viral DNA replication appears to be blocked. Consistent with the cascade regulation model of viral gene expression, we detect little intermediate- and late-gene expression in VV5-4 cells. Since vaccinia virus is known to be cytolytic, isolation of this mutant therefore demonstrates a new mode of the cellular microenvironment that affects progression of the virus life cycle, resulting in a different cell fate. This process appears to be mediated by a general mechanism, since VV5-4 is also resistant to Shope fibroma virus and myxoma virus killing. On the other hand, VV5-4 remains sensitive to cowpox virus killing. To examine the mechanism of VV5-4 survival, we investigated whether apoptosis is involved. DNA laddering and staining of apoptotic nuclei with Hoechst 33258 were observed in both CHO and VV5-4 cells infected with vaccinia virus. We concluded that the cellular pathway, which blocks viral DNA replication and allows VV5-4 to survive, is independent of apoptosis. This mutant also provides evidence that an inductive signal for apoptosis upon vaccinia virus infection occurs prior to viral DNA replication.  相似文献   

14.
M Merchlinsky  B Moss 《Cell》1986,45(6):879-884
The junctions, separating unit-length genomes in intracellular concatemeric forms of vaccinia virus DNA, are duplex copies of the hairpin loops that form the ends of mature DNA molecules present in infectious virus particles. Circular E. coli plasmids with palindromic junction fragments were replicated in vaccinia virus-infected cells and resolved into linear minichromosomes with vector DNA in the center and vaccinia virus DNA hairpins at the two ends. Resolution did not occur when the concatemer joint was less than 250 bp or when plasmids were transfected into uninfected cells, indicating requirements for a specific DNA structure and viral trans-acting factors. These studies indicate that concatemers can serve as replicative intermediates and account for the generation of flip-flop sequence variation of the hairpins at the ends of the mature vaccinia virus genome.  相似文献   

15.
16.
17.
The recombinant plasmids pVL1 and pVL2 were constructed for insertion and expression of alien genetic information in HindIII-F fragment of vaccinia virus DNA under the control of the strong early-late promoter of the protein 7.5. The late promoter of the main late protein 11K of vaccinia virus was cloned. These as well as other vector plasmids have been used to express the procaryotic beta-galactosidase gene. Functional activity of the genetic engineering constructions was estimated by transitory expression of beta-galactosidase after plasmid DNA transfection into the chicken fibroblasts embryo culture infected with vaccinia virus. The promoters of the genes for 7.5K and 11K proteins permitted the high level of beta-galactosidase expression. Using of the early promoter of the central part of HindIII-F fragment DNA from vaccinia virus was less efficient for expression of the enzyme.  相似文献   

18.
19.
I have used a plasmid containing two copies of the Saccharmyces cerevisiae his3 gene to study intramolecular homologous recombination in vaccina virus-infected cells. Recombination of the plasmid was monitored by restriction enzyme digestion and Southern blot hybridization in cells infected with representatives from each of 32 complementation groups of temperature-sensitive mutants ts42 and ts17 did not replicate nor detectably recombine the input plasmid. All except one of the mutants that synthesized normal amounts of viral DNA and protein replicated and recombined the plasmid in a manner indistinguishable from wild-type virus. The remaining mutant, ts13, only poorly replicated and recombined the input plasmid. Thus, the processes of replication and recombination could not be separated by using this battery of mutants. Viral mutants defective in late protein synthesis were unable to resolve the vaccinia virus concatemer junction in plasmids but carried out intramolecular homologous recombination with plasmids as efficiently as did wild-type virus at the conditionally lethal temperature. This result distinguishes homologous recombination, which requires early gene products, from resolution of concatemer junctions, which requires additional late gene products.  相似文献   

20.
Regulation of HIV-1 gene expression.   总被引:28,自引:0,他引:28  
B R Cullen 《FASEB journal》1991,5(10):2361-2368
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号