首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
作为一种肿瘤抑制因子,p53可协调多种反应,包括细胞周期阻滞、DNA修复、抗氧化作用、抗血管生成作用、自噬、衰老和凋亡等。p53主要通过调节其靶基因的转录发挥其肿瘤抑制功能,但p53是癌症中最常见的突变基因之一,当p53发生突变时,就会导致其功能丧失进而导致肿瘤细胞生长。p53已成为癌症治疗中最重要和最有吸引力的药物靶点之一,因此以p53为靶点产生了许多癌症治疗方式。本文回顾了靶向p53信号通路在基因治疗、靶向治疗以及免疫治疗中的研究,以期为了解靶向p53的研究提供新思路。  相似文献   

2.
染色质重塑因子ARID1A(the AT-rich interaction domain 1A)基因是肿瘤中突变率最高的基因之一,ARID1A突变通常导致其蛋白质表达和功能缺失,ARID1A突变的肿瘤细胞和小鼠模型均证明ARID1A突变可促进肿瘤发生发展,提示ARID1A突变在肿瘤演化中的恶性作用。挖掘靶向ARID1A突变肿瘤细胞的治疗方式和药物靶标有助于未来靶向ARID1A突变肿瘤的临床药物研发,且具有临床应用意义。该文总结了针对ARID1A突变肿瘤细胞的合成致死(synthetic lethality)方法和ARID1A突变肿瘤免疫治疗策略的分子机理和最新研究进展,旨在为未来探索ARID1A突变肿瘤的临床治疗方法提供参考。  相似文献   

3.
目的 p53是人体内重要的肿瘤抑制因子,但在人类肿瘤中因高频突变而失去抑癌功能。突变型p53 (mutant p53,mutp53)可促进肿瘤的发生、发展和转移。由于在肿瘤细胞中通常有较高表达,mutp53已成为区别于正常细胞的一个特异性抗肿瘤靶点。本研究旨在探索穿心莲内酯的抗肿瘤作用机制,为寻找靶向mutp53的抗肿瘤化合物提供理论依据。方法 构建可以快速筛选具有恢复mutp53下游转录因子的荧光素酶系统,观察穿心莲内酯对H1299-p53 R273H-PUMAluciferase和H1299-p53R175H-PUMA-luciferase细胞中PUMA基因的表达情况;采用免疫荧光实验,检测穿心莲内酯对HT29(R273H)和SK-BR-3 (R175H)细胞中mutp53的表达影响;采用免疫印迹实验进一步观察穿心莲内酯恢复了mutp53肿瘤细胞中p53下游靶蛋白PUMA、p21、Noxa的表达;随后采用MTT和流式细胞分析,检测穿心莲内酯对肿瘤细胞增殖和凋亡的影响;此外,还通过si RNA敲低Hsp70表达后,研究穿心莲内酯对mutp53下游基因的重激活作用。结果 穿心莲内酯可以...  相似文献   

4.
ARID1A编码的BAF250a蛋白是SWI/SNF(SWItch/Sucrose Non-Fermentable)染色质重组复合物BAF(BRG1-associated factors)的亚基之一,参与改变染色体的结构和可接近性。ARID1A在肝细胞癌(hepatocellular carcinoma,HCC)中的突变率高达13%,但目前尚无有效的治疗药物。本研究旨在利用合成致死策略寻找携带ARID1A突变HCC的治疗新靶标。首先,本研究通过分析ARID1A突变与肿瘤恶性程度的相关性发现ARID1A突变的肿瘤恶性度增加;进而分析Achilles和NCI-60癌症细胞系中ARID1A突变和野生型细胞系的基因表型值(gene phenotype value,GPV)和高表达基因,获得ARID1A突变细胞低GPV和高表达的重叠基因,再扩大样本使用CCLE(Cancer Cell Line Encyclopedia)细胞系的高表达基因进行重叠基因分析;最后并在TCGA(the Cancer Genome Atlas)肝癌数据库中进行筛选,获得116个潜在的ARID1A合成致死基因。本研究运用生物信息学方法计算获得多个ARID1A的潜在合成性致死基因,为ARID1A突变HCC患者提供新的治疗靶点,也为靶向药物研发提供了新靶标和新策略。  相似文献   

5.
发挥着重要作用.越来越多的研究发现, p53不仅能够维持细胞氧化还原平衡和代谢稳定,还有效调控细胞内铁死亡过程,进而影响癌细胞生长.另外, p53通过参与肿瘤细胞代谢重编程活动,可显著增强肿瘤抑制能力.然而,突变型p53会失去抑瘤能力,并表现出与野生型p53不同的代谢调控功能.本文首先围绕p53对肿瘤细胞不同代谢途径的调控及其参与的氧化应激反应和自噬过程进行总结,然后详细梳理了肿瘤细胞中p53翻译后修饰和突变型p53的功能变化,最后对p53在调控肿瘤代谢方面的重要作用进行展望.期望该工作为研究者深入了解p53对肿瘤代谢的调控功能及其抗癌机制提供参考.  相似文献   

6.
目的探讨进展期胃癌生长过程中p53基因表达与微血管密度和生物学行为之间的关系。方法搜集有随访资料的胃癌标本107例,用免疫组化对突变型p53和CD34作了标记,用原位杂交对野生型p53作了检测。结果突变型p53在肿瘤不同侵犯深度、不同生长方式、不同淋巴结转移状态以及预后方面,存在显著差异(P<0.05),突变型p53与微血管密度显著相关(P<0.05),而野生型p53则与突变型p53相反。结论突变型和野生型p53在肿瘤生长过程中的表达不同,说明p53的不同功能状态在肿瘤的发展过程中发挥重要作用。  相似文献   

7.
肝癌细胞HepG2中p53调控miRNA-3661的生物信息分析与功能验证   总被引:1,自引:0,他引:1  
对已在前期实验中通过Dox诱导肝癌细胞HepG2 DNA损伤发现的受p53调控的hsa-miR-3661进行生物信息学分析,并通过分子生物学实验对其功能进行了验证,为miR-3661在肝肿瘤中的调控机制的研究提供理论基础。获取miR-3661结构与序列信息;预测靶基因,使用DAVID进行miRNA靶基因功能富集分析;分析miR-3661的p53结合位点,通过基因间的相互作用构建调控网络;进行细胞增殖实验验证miR-3661抑制肿瘤功能。结果表明,miR-3661序列保守,启动子区存在p53结合位点,暗示p53与hsa-miR-3661存在直接调控;预测靶基因1 009个,369个显著富集于细胞周期调控、细胞增殖、细胞凋亡等肿瘤相关生物学过程(P0.05),主要参与了癌症信号通路、MAPK信号通路与Erb B信号通路(P0.05);通过268组基因间的相互作用数据构建了p53、hsa-miR-3661和靶基因的调控网络,从系统生物学角度分析了参与多个肿瘤生物进程的关键靶基因;在实验中证实过表达miR-3661可以显著抑制肝癌细胞HepG2的增殖过程(P-value=0.001 46)。miR-3661受p53直接调控,其靶基因显著富集于多种肿瘤相关生物进程与信号通路,过表达miR-3661可显著抑制肝癌细胞增殖。  相似文献   

8.
肿瘤抑制因子p53主要作为转录因子发挥作用.当细胞受到诸如缺氧、DNA损伤等胁迫时,p53蛋白迅速在细胞内积聚并激活,从而调控一系列基因的转录,导致细胞周期停顿、凋亡或衰老,避免细胞癌化.p53功能的失活往往导致癌症发生.编码p53蛋白的TP53基因的突变是p53失活的主要方式.突变型p53不仅失去抑癌作用,而且还具有...  相似文献   

9.
通过对676条人microRNA进行筛选,共得到了53条新的具有p53-DNA结合位点且调控p53上游转录因子和下游靶基因的microRNA.结合已有蛋白质互作关系与microRNA调控信息,构建了p53-microRNA相互作用网络图,其中FAS受多条microRNA调控,FAS是介导细胞凋亡的关键因子,因此,FAS-microRNA的相互作用可能在细胞凋亡途径中起着关键的作用.随后,提出了microRNA参与p53调控的假设机制,认为p53调控靶基因与microRNA的同时也受上游转录因子与microRNA的调控,从而形成了以p53为中心的一种平衡,当这种调控平衡一旦被打破则会引起信号通路的紊乱,从而可能引发相应的疾病.对这53条microRNA进行靶基因预测,共得到15 500个靶基因,对这些基因的出现频率进行聚类分析共得到27个簇,将出现频率大于10的基因进行功能注释分析,发现多数基因功能属于近来发现的p53靶基因新的功能分类——细胞粘连和细胞运动,目前研究认为,p53通过与这些具有细胞粘连和运动功能的靶基因结合来抑制肿瘤的迁移.通过对15 500个基因进行功能注释分析,得到了30条感兴趣的参与细胞周期调控、细胞凋亡和细胞增殖的microRNA,其中有9条microRNA于3种生物学进程均有参与,这9条microRNA分别是: hsa-mir-181a-1、hsa-mir-181b-1、hsa-mir-181c、hsa-mir-181d、hsa-mir-195、hsa-mir-497、hsa-mir-495、hsa-mir-543和hsa-mir-548c.这暗示着这9条microRNA在p53信号通路的调节中可能起着关键的作用,它们互相作用共同调节着多个p53信号环路.最后在36个物种的基因组中对这30条microRNA进行了同源性搜索与保守性分析,结果发现有10条高度保守的且为目前数据库所未收录的microRNA.这10条microRNA分别是:hsa-mir-497、hsa-mir-495、hsa-mir-543、hsa-mir-19a、hsa-mir-19b-1、hsa-mir-200b、hsa-mir-448、 hsa-mir-28、hsa-mir-455和hsa-mir-590.  相似文献   

10.
魏永永  侯静  唐文如  罗瑛 《遗传》2012,34(12):1513-1521
肿瘤发生是抑癌基因失活和原癌基因激活共同作用的结果。p53基因被认为是目前最重要的抑癌基因, 50%以上的肿瘤中存在p53基因的点突变现象; 而Ras基因是肿瘤中突变率较高的原癌基因, 其突变率在某些肿瘤中高达30%~90%。研究发现, 肿瘤发生过程中抑癌基因p53与原癌基因Ras之间存在复杂的相互协同作用。根据目前的文献报道, p53与Ras之间的协同作用可以分为3种:第一, p53对Ras的调节作用; 第二, Ras对p53的调节作用; 第三, p53和Ras共同调控某些与肿瘤发生相关的关键基因。了解p53与Ras之间的3种调控作用将有助于我们进一步认识p53失活与Ras激活协同促进肿瘤发生的分子通路和机制, 同时也将为癌症的个性化治疗和药物靶点的选择提供重要依据。因此, 文章将对近年来所发现的p53与Ras的各种协同作用机制及其与肿瘤发生的关系进行概括和综述。  相似文献   

11.
Mizuarai S  Kotani H 《Human genetics》2010,128(6):567-575
Synthetic lethal interaction is defined as a combination of two mutations that is lethal when present in the same cell; each individual mutation is non-lethal. Synthetic lethal interactions attract attention in cancer research fields since the discovery of synthetic lethal genes with either oncogenes or tumor suppressor genes (TSGs) provides novel cancer therapeutic targets. Due to the selective lethal effect on cancer cells harboring specific genetic alterations, it is expected that targeting synthetic lethal genes would provide wider therapeutic windows compared with cytotoxic chemotherapeutics. Here, we review the current status of the application of synthetic lethal screening in cancer research fields from biological and methodological viewpoints. Very recent studies seeking to identify synthetic lethal genes with K-RAS and p53, which are known to be the most frequently occurring oncogenes and TSGs, respectively, are introduced. Among the accumulating amount of research on synthetic lethal interactions, the synthetic lethality between BRCA1/2 and PARP1 inhibition has been clinically proven. Thus, both preclinical and clinical data showing a preferential anti-tumor effect on BRCA1/2 deficient tumors by a PARP1 inhibitor are the best examples of the synthetic lethal approach of cancer therapeutics. Finally, methodological progress regarding synthetic lethal screening, including barcode shRNA screening and in vivo synthetic lethal screening, is described. Given the fact that an increasing number of synthetic lethal genes for major cancerous genes have been validated in preclinical studies, this intriguing approach awaits clinical verification of preferential benefits for cancer patients with specific genetic alterations as a clear predictive factor for tumor response.  相似文献   

12.
Carcinogenesis is a multistage process, involving oncogene activation and tumor suppressor gene inactivation as well as complex interactions between tumor and host tissues, leading ultimately to an aggressive metastatic phenotype. Among many genetic lesions, mutational inactivation of p53 tumor suppressor, the “guardian of the genome,” is the most frequent event found in 50% of human cancers. p53 plays a critical role in tumor suppression mainly by inducing growth arrest, apoptosis, and senescence, as well as by blocking angiogenesis. In addition, p53 generally confers the cancer cell sensitivity to chemoradiation. Thus, p53 becomes the most appealing target for mechanism-driven anticancer drug discovery. This review will focus on the approaches currently undertaken to target p53 and its regulators with an overall goal either to activate p53 in cancer cells for killing or to inactivate p53 temporarily in normal cells for chemoradiation protection. The compounds that activate wild type (wt) p53 would have an application for the treatment of wt p53-containing human cancer. Likewise, the compounds that change p53 conformation from mutant to wt p53 (p53 reactivation) or that kill the cancer cells with mutant p53 using a synthetic lethal mechanism can be used to selectively treat human cancer harboring a mutant p53. The inhibitors of wt p53 can be used on a temporary basis to reduce the normal cell toxicity derived from p53 activation. Thus, successful development of these three classes of p53 modulators, to be used alone or in combination with chemoradiation, will revolutionize current anticancer therapies and benefit cancer patients.  相似文献   

13.
The importance of p53 in chemotherapy-induced apoptosis of cancer cells is well established. p53 plays a critical role in the cellular response to DNA damage by regulating genes involved in cell cycle progression, apoptosis, and genomic stability. As a result, p53 tumor status is a critical determinant of both responses to anti-cancer treatment and clinical prognosis. Interestingly, tumors expressing certain mutant forms of p53 (“gain of function”) are particularly resistant to chemotherapy, even when compared to cells that lack any detectable p53. Until recently, the explanation for this enhanced chemoresistance was not clear. Recent studies have shown that the p53 homologues, p73 and p63, are also activated by chemotherapies, leading to tumor cell death. Now the discovery that mutant p53 interacts with p73, and that regulation of this interaction by a p53 polymorphism can modulate chemosensitvity provide a new model for how p53-family interactions can influence the response of tumors to anti-cancer therapies. Since p53 mutations are found in more than 50% of human tumors, strategies aimed at manipulating these interactions may prove useful in enhancing the chemotherapy response, and perhaps, overcoming chemoresistance.  相似文献   

14.
The importance of p53 in chemotherapy-induced apoptosis of cancer cells is well established. p53 plays a critical role in the cellular response to DNA damage by regulating genes involved in cell cycle progression, apoptosis, and genomic stability. As a result, p53 tumor status is a critical determinant of both responses to anti-cancer treatment and clinical prognosis. Interestingly, tumors expressing certain mutant forms of p53 ("gain of function") are particularly resistant to chemotherapy, even when compared to cells that lack any detectable p53. Until recently, the explanation for this enhanced chemoresistance was not clear. Recent studies have shown that the p53 homologues, p73 and p63, are also activated by chemotherapies, leading to tumor cell death. Now the discovery that mutant p53 interacts with p73, and that regulation of this interaction by a p53 polymorphism can modulate chemosensitvity provide a new model for how p53-family interactions can influence the response of tumors to anti-cancer therapies. Since p53 mutations are found in more than 50% of human tumors, strategies aimed at manipulating these interactions may prove useful in enhancing the chemotherapy response, and perhaps, overcoming chemoresistance.  相似文献   

15.
p53 and p19(ARF) are tumor suppressors frequently mutated in human tumors. In a high-throughput screen in mice for mutations collaborating with either p53 or p19(ARF) deficiency, we identified 10,806 retroviral insertion sites, implicating over 300 loci in tumorigenesis. This dataset reveals 20 genes that are specifically mutated in either p19(ARF)-deficient, p53-deficient or wild-type mice (including Flt3, mmu-mir-106a-363, Smg6, and Ccnd3), as well as networks of significant collaborative and mutually exclusive interactions between cancer genes. Furthermore, we found candidate tumor suppressor genes, as well as distinct clusters of insertions within genes like Flt3 and Notch1 that induce mutants with different spectra of genetic interactions. Cross species comparative analysis with aCGH data of human cancer cell lines revealed known and candidate oncogenes (Mmp13, Slamf6, and Rreb1) and tumor suppressors (Wwox and Arfrp2). This dataset should prove to be a rich resource for the study of genetic interactions that underlie tumorigenesis.  相似文献   

16.
The promise and obstacle of p53 as a cancer therapeutic agent   总被引:1,自引:0,他引:1  
p53 is a tumor suppressor gene that is mutated in greater than 50% of human cancers. The action of p53 as a tumor suppressor involves inhibition of cell proliferation through cell cycle arrest and/or apoptosis. Loss of p53 function therefore allows the uncontrolled proliferation associated with cancerous cells. While design of most anti-cancer agents has focused on targeting and inactivating cancer promoting targets, such as oncogenes, recent attention has been given to restoring the lost activity of tumor suppressor genes. Because the loss of p53 function is so prevalent in human cancer, this protein is an ideal candidate for such therapy. Several gene therapeutic strategies have been employed in the attempt to restore p53 function to cancerous cells. These approaches include introduction of wild-type p53 into cells with mutant p53; the use of small molecules to stabilize mutant p53 in a wild-type, active conformation; and the introduction of agents to prevent degradation of p53 by proteins that normally target it. In addition, because mutant p53 has oncogenic gain of function activity, several approaches have been investigated to selectively target and kill cells harboring mutant p53. These include the introduction of mutant viruses that cause cell death only in cells with mutant p53 and the introduction of a gene that, in the absence of functional p53, produces a toxic product. Many obstacles remain to optimize these strategies for use in humans, but, despite these, restoration of p53 function is a promising anti-cancer therapeutic approach.  相似文献   

17.
18.
19.
Cell cycle checkpoints and their impact on anticancer therapeutic strategies   总被引:15,自引:0,他引:15  
Cells contain numerous pathways designed to protect them from the genomic instability or toxicity that can result when their DNA is damaged. The p53 tumor suppressor is particularly important for regulating passage through G1 phase of the cell cycle, while other checkpoint regulators are important for arrest in S and G2 phase. Tumor cells often exhibit defects in these checkpoint proteins, which can lead to hypersensitivity; proteins in this class include ataxia-telangiectasia mutatated (ATM), Meiotic recanbination 11 (Mre11), Nijmegen breakage syndrome 1 (Nbs 1), breast cancer susceptibility genes 1 and 2 (BRCA1), and (BRCA2). Consequently, tumors should be assessed for these specific defects, and specific therapy prescribed that has high probability of inducing response. Tumors defective in p53 are frequently considered resistant to apoptosis, yet this defect also provides an opportunity for targeted therapy. When their DNA is damaged, p53-defective tumor cells preferentially arrest in S or G2 phase where they are susceptible to checkpoint inhibitors such as caffeine and UCN-01. These inhibitors preferentially abrogate cell cycle arrest in p53-defective cells, driving them through a lethal mitosis. Wild type p53 can prevent abrogation of arrest by elevating levels of p21(waf1) and decreasing levels of cyclins A and B. During tumorigenesis, tumor cells frequently loose checkpoint controls and this facilitates the development of the tumor. However, these defects also represent an Achilles heel that can be targeted to improve current therapeutic strategies.  相似文献   

20.
Synthetic lethality is the synthesis of mutations leading to cell death. Tumor-specific synthetic lethality has been targeted in research to improve cancer therapy. With the advances of techniques in molecular biology, such as RNAi and CRISPR/Cas9 gene editing, efforts have been made to systematically identify synthetic lethal interactions, especially for frequently mutated genes in cancers. However, elucidating the mechanism of synthetic lethality remains a challenge because of the complexity of its influencing conditions. In this study, we proposed a new computational method to identify critical functional features that can accurately predict synthetic lethal interactions. This method incorporates several machine learning algorithms and encodes protein-coding genes by an enrichment system derived from gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways to represent their functional features. We built a random forest-based prediction engine by using 2120 selected features and obtained a Matthews correlation coefficient of 0.532. We examined the top 15 features and found that most of them have potential roles in synthetic lethality according to previous studies. These results demonstrate the ability of our proposed method to predict synthetic lethal interactions and provide a basis for further characterization of these particular genetic combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号