首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to confirm linkage of the proteolipid protein gene (PLP) and Pelizaeus-Merzbacher disease (PMD). A T-->A transversion in nucleotide pair 35 of exon 4 of PLP was found in a large Finnish kindred with PMD. This mutation results in the substitution Val165-->Glu165. We used a combination of single-strand conformational polymorphism and PCR primer extension to determine the presence or absence of the point mutation in family members. A lod score of 2.6 (theta = 0) was found for linkage of the gene and the disease. We examined 101 unrelated X chromosomes and found none with the transversion. This is the second report of linkage of PMD to a missense mutation in PLP. These findings support the hypothesis that PMD in this family is a result of the missense mutation present in exon 4 of PLP.  相似文献   

2.
Pelizaeus-Merzbacher disease (PMD) is an X-linked neurologic disorder characterized by dysmyelination in the central nervous system. Proteolipid protein (PLP), a major structural protein of myelin, is coded on the X chromosome. It has been postulated that a defect in the PLP gene is responsible for PMD. Different single-nucleotide substitutions have been found in conserved regions of the PLP gene of four unrelated PMD patients. Novel Southern blot patterns suggested a complex rearrangement in a fifth family. Linkage to PLP has been shown in others. We evaluated the PLP locus in a four-generation family with two living males affected with X-linked PMD. Analysis of DNA from the affected males revealed complete absence of a band, with PLP probes encompassing the promoter region, the entire coding region, and the 3' untranslated region and spanning at least 29 kb of genomic DNA. DNA from unaffected relatives gave the expected band pattern. Two obligate and one probable carrier women were hemizygous for the PLP locus by dosage analysis. Although it is unlikely, the previously described point mutations in PLP could represent polymorphisms. The finding of complete deletion of the PLP gene in our family is a stronger argument that mutations in PLP are responsible for X-linked PMD.  相似文献   

3.
Mutations of the proteolipid protein gene (PLP1) cause Pelizaeus-Merzbacher disease (PMD) and Spastic paraplegia type 2 (SPG2). The rumpshaker mutation is associated with mild forms of PMD or SPG2 in man and the identical mutation occurs in mice, the phenotype depending on genetic background. The mild phenotype in C3H mice becomes a lethal disease when expressed on the C57BL/6 background. rumpshaker PLP is synthesised at a similar rate to wild type but is rapidly degraded by the proteasome. We show that the rates of synthesis, degradation and myelin incorporation of PLP/DM20 are similar in mutants on both backgrounds and therefore differences in PLP processing are unlikely to be the basis of the phenotypic variation. An unfolded protein response (UPR) is activated in rumpshaker. Whereas activation of CHOP correlates with phenotypic severity, we find no difference in the response of BiP and X-box protein1 (Xbp1) between the two strains. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at . Special issue dedicated to Anthony Campagnoni.  相似文献   

4.
Among the numerous leukodystrophies that have an early onset and no biochemical markers, Pelizaeus-Merzbacher disease (PMD) is one that can be identified using strict clinical criteria and demonstrating an abnormal formation of myelin that is restricted to the CNS in electrophysiological studies and brain magnetic resonance imaging (MRI). In PMD, 12 different base substitutions and one total deletion of the genomic region containing the PLP gene have been reported, but, despite extensive analysis, PLP exon mutations have been found in only 10%-25% of the families analyzed. To test the genetic homogeneity of this disease, we have carried out linkage analysis with polymorphic markers of the PLP genomic region in 16 families selected on strict diagnostic criteria of PMD. We observed a tight linkage of the PMD locus with markers of the PLP gene (cDNA PLP, exon IV polymorphism) and of the Xq22 region (DXS17, DXS94, and DXS287), whereas the markers located more proximally (DXYS1X and DXS3) or distally (DXS11) were not linked to the PMD locus. Multipoint analysis gave a maximal location score for the PMD locus (13.98) and the PLP gene (8.32) in the same interval between DXS94 and DXS287, suggesting that in all families PMD is linked to the PLP locus. Mutations of the extraexonic PLP gene sequences or of another unknown close gene could be involved in PMD. In an attempt to identify molecular defects of this genomic region that are responsible for PMD, these results meant that RFLP analysis could be used to improve genetic counseling for the numerous affected families in which a PLP exon mutation could not be demonstrated.  相似文献   

5.
Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10%-25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP gene duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be a important genetic abnormality in PMD and affect myelin formation.  相似文献   

6.
A group of inherited neurological disorders are the X-chromosome linked dysmyelinoses, in which myelin membranes of the CNS are missing or perturbed due to a strongly reduced number of differentiated oligodendrocytes. In animal dysmyelinoses (jimpy mouse, msd-mouse, md rat, shaking pup) mutations of the main integral myelin membrane protein, proteolipid protein, have been identified. Pelizaeus-Merzbacher disease (PMD) or sudanophilic leucodystrophy is an X-linked dysmyelinosis in humans. We report here on the molecular basis of the defect of affected males of a PMD kindred. Rearrangements of the PLP gene were excluded by Southern blot hybridisation analysis and PCR amplification of overlapping domains of the PLP gene. Sequence analysis revealed one single C----T transition in exon IV, which leads to a threonine----isoleucine substitution within a hydrophobic intramembrane domain. The impact of this amino-acid exchange on the structure of PLP in the affected cis membrane domain is discussed. A space filling model of this domain suggests a tight packing of the alpha-helices of the loop which is perturbed by the amino-acid substitution in this PMD exon IV mutant. The C----T transition in exon IV abolishes a Hph I restriction site. This mutation at the recognition site for Hph I (RFLP) and allele-specific primers have been used for mutation screening the PMD kindred.  相似文献   

7.
Duplication of PLP1 (proteolipid protein gene 1) and the subsequent overexpression of the myelin protein PLP (also known as DM20) in oligodendrocytes is the most frequent cause of Pelizaeus-Merzbacher disease (PMD), a fatal leukodystrophy without therapeutic options. PLP binds cholesterol and is contained within membrane lipid raft microdomains. Cholesterol availability is the rate-limiting factor of central nervous system myelin synthesis. Transgenic mice with extra copies of the Plp1 gene are accurate models of PMD. Dysmyelination followed by demyelination, secondary inflammation and axon damage contribute to the severe motor impairment in these mice. The finding that in Plp1-transgenic oligodendrocytes, PLP and cholesterol accumulate in late endosomes and lysosomes (endo/lysosomes), prompted us to further investigate the role of cholesterol in PMD. Here we show that cholesterol itself promotes normal PLP trafficking and that dietary cholesterol influences PMD pathology. In a preclinical trial, PMD mice were fed a cholesterol-enriched diet. This restored oligodendrocyte numbers and ameliorated intracellular PLP accumulation. Moreover, myelin content increased, inflammation and gliosis were reduced and motor defects improved. Even after onset of clinical symptoms, cholesterol treatment prevented disease progression. Dietary cholesterol did not reduce Plp1 overexpression but facilitated incorporation of PLP into myelin membranes. These findings may have implications for therapeutic interventions in patients with PMD.  相似文献   

8.
The proteolipid protein gene (PLP) is normally present at chromosome Xq22. Mutations and duplications of this gene are associated with Pelizaeus-Merzbacher disease (PMD). Here we describe two new families in which males affected with PMD were found to have a copy of PLP on the short arm of the X chromosome, in addition to a normal copy on Xq22. In the first family, the extra copy was first detected by the presence of heterozygosity of the AhaII dimorphism within the PLP gene. The results of FISH analysis showed an additional copy of PLP in Xp22.1, although no chromosomal rearrangements could be detected by standard karyotype analysis. Another three affected males from the family had similar findings. In a second unrelated family with signs of PMD, cytogenetic analysis showed a pericentric inversion of the X chromosome. In the inv(X) carried by several affected family members, FISH showed PLP signals at Xp11.4 and Xq22. A third family has previously been reported, in which affected members had an extra copy of the PLP gene detected at Xq26 in a chromosome with an otherwise normal banding pattern. The identification of three separate families in which PLP is duplicated at a noncontiguous site suggests that such duplications could be a relatively common but previously undetected cause of genetic disorders.  相似文献   

9.
10.
Missense mutations in the proteolipid protein 1 (PLP1) gene cause a wide spectrum of hypomyelinating disorders, from mild spastic paraplegia type 2 to severe Pelizaeus-Merzbacher disease (PMD). Mutant PLP1 accumulates in the endoplasmic reticulum (ER) and induces ER stress. However, the link between the clinical severity of PMD and the cellular response induced by mutant PLP1 remains largely unknown. Accumulation of misfolded proteins in the ER generally leads to up-regulation of ER chaperones to alleviate ER stress. Here, we found that expression of the PLP1-A243V mutant, which causes severe disease, depletes some ER chaperones with a KDEL (Lys-Asp-Glu-Leu) motif, in HeLa cells, MO3.13 oligodendrocytic cells, and primary oligodendrocytes. The same PLP1 mutant also induces fragmentation of the Golgi apparatus (GA). These organelle changes are less prominent in cells with milder disease-associated PLP1 mutants. Similar changes are also observed in cells expressing another disease-causing gene that triggers ER stress, as well as in cells treated with brefeldin A, which induces ER stress and GA fragmentation by inhibiting GA to ER trafficking. We also found that mutant PLP1 disturbs localization of the KDEL receptor, which transports the chaperones with the KDEL motif from the GA to the ER. These data show that PLP1 mutants inhibit GA to ER trafficking, which reduces the supply of ER chaperones and induces GA fragmentation. We propose that depletion of ER chaperones and GA fragmentation induced by mutant misfolded proteins contribute to the pathogenesis of inherited ER stress-related diseases and affect the disease severity.  相似文献   

11.
Pelizaeus-Merzbacher disease (PMD) is a clinically heterogeneous, slowly progressive leukodystrophy. The recent detection of mutations in the myelin proteolipid protein (PLP) gene in several PMD patients offers the opportunity both to design DNA-based tests that would be useful in diagnosing a proportion of PMD cases and, in particular, to evaluate the diagnostic utility of single-strand conformation polymorphism (SSCP) analysis for this disease. A combination of SSCP analysis and direct sequencing of PCR-amplified DNA was used to screen for PLP mutations in 24 patients affected with leukodystrophies of unknown etiology. Two heretofore undescribed mutations in the PLP gene were identified, Asp202His in exon 4 and Gly73Arg in exon 3. The ease and efficiency of SSCP analysis in detecting new mutations support the utilization of this technique in screening for PLP mutations in patients with unexplained leukodystrophies.  相似文献   

12.
佩梅病(Pelizaeus-Merzbacher disease,PMD)是髓鞘形成低下性脑白质营养不良疾病中最常见的一种,其临床特点主要表现为发育落后尤其是大运动落后、眼震、肌张力低下等。其致病机制主要为脑白质髓鞘形成细胞-少突胶质细胞发生病理性改变从而导致髓鞘形成不良,相应理论基础包括以往研究中PLP1点突变通过影响PLP1/DM20寡聚体的形成,进而影响少突胶质细胞的存活,髓鞘分子结构的形成等;而PLP1重复突变则使少突胶质细胞及髓鞘脂的发育停止。近年来对细胞器互作网络(organelle interaction network,OIN)的研究进一步揭示了PLP1突变的致病机制:PLP1点突变通过影响PLP1蛋白上膜进而影响少突胶质细胞髓鞘化。PLP1重复突变则改变内质网线粒体间的连接,继而影响线粒体的形态功能等产生致病作用。目前已有相关研究表明,一些小分子化合物或药物例如胆固醇、吡拉西坦等以及基因疗法在动物体内对PMD临床症状有改善作用,其在PMD 患者体内的疗效有待进一步证实。  相似文献   

13.
Pelizaeus-Merzbacher Disease (PMD) is an X-linked developmental defect of myelination affecting the central nervous system and segregating with the proteolipoprotein (PLP) locus. Investigating 82 strictly selected sporadic cases of PMD, we found PLP mutations in 77%; complete PLP-gene duplications were the most frequent abnormality (62%), whereas point mutations in coding or splice-site regions of the gene were involved less frequently (38%). We analyzed the maternal status of 56 cases to determine the origin of both types of PLP mutation, since this is relevant to genetic counseling. In the 22 point mutations, 68% of mothers were heterozygous for the mutation, a value identical to the two-thirds of carrier mothers that would be expected if there were an equal mutation rate in male and female germ cells. In sharp contrast, among the 34 duplicated cases, 91% of mothers were carriers, a value significantly (chi2=9. 20, P<.01) in favor of a male bias, with an estimation of the male/female mutation frequency (k) of 9.3. Moreover, we observed the occurrence of de novo mutations between parental and grandparental generations in 17 three-generation families, which allowed a direct estimation of the k value (k=11). Again, a significant male mutation imbalance was observed only for the duplications. The mechanism responsible for this strong male bias in the duplications may involve an unequal sister chromatid exchange, since two deletion events, responsible for mild clinical manifestations, have been reported in PLP-related diseases.  相似文献   

14.
15.
Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder of central nervous system (CNS) myelination typically affecting males. A genomic duplication of variable size at Xq22.2, containing the entire proteolipid protein 1 gene (PLP1), is responsible for approximately 60-70% of PMD cases. The aim of this study was to develop a rapid and robust method for determination of PLP1 gene dosage. We optimized two multiplex real-time quantitative PCR (Q-PCR) assays targeting exons 3 and 6 of the PLP1 gene, and then validated these assays by retrospective analysis of a set of genomic DNAs from 67 previously tested patients and 43 normal controls. Samples were analyzed in multiplex PCR reactions using TaqMan chemistry and the ABI Prism 7000 Sequence Detection System. PLP1 dosage was determined by the relative quantitative comparative threshold cycle method (DeltaDeltaCt) using the human serum albumin gene as the endogenous reference gene. Three clearly non-overlapping ranges of results, corresponding to the presence of one, two, or three PLP1 copies, were detected in both assays. The results were completely concordant with gender and previous PLP1 gene dosage testing based on quantitative fluorescent multiplex PCR and analysis of a dinucleotide polymorphism in the first intron of the PLP1 gene. We conclude that multiplex real-time Q-PCR represents a fast and reliable tool for PLP1 duplication testing in PMD families.  相似文献   

16.
The nosology of the inborn errors of myelin metabolism has been stymied by the lack of molecular genetic analysis. Historically, Pelizaeus-Merzbacher disease has encompassed a host of neurologic disorders that present with a deficit of myelin, the membrane elaborated by glial cells that encircles and successively enwraps axons. We describe here a Pelizaeus-Merzbacher pedigree of the classical type, with X-linked inheritance, a typical clinical progression, and a pathologic loss of myelinating cells and myelin in the central nervous system. To discriminate variants of Pelizaeus-Merzbacher disease, a set of oligonucleotide primers was constructed to polymerase-chain-reaction (PCR) amplify and sequence the gene encoding proteolipid protein (PLP), a structural protein that comprises half of the protein of the myelin sheath. The PLP gene in one of two affected males and the carrier mother of this family exhibited a single base difference in the more than 2 kb of the PLP gene sequenced, a C----T transition that would create a serine substitution for proline at the carboxy end of the protein. Our results delineate the clinical features of Pelizaeus-Merzbacher disease, define the possible molecular pathology of this dysmyelinating disorder, and address the molecular classification of inborn errors of myelin metabolism. Patients with the classical form (type I) and the more severely affected, connatal variant of Pelizaeus-Merzbacher disease (type II) would be predicted to display mutation at the PLP locus. The other variants (types III-VI), which have sometimes been categorized as Pelizaeus-Merzbacher disease, may represent mutations in genes encoding other structural myelin proteins or proteins critical to myelination.  相似文献   

17.
Pelizaeus Merzbacher disease and Pelizaeus Merzbacher like disease (PMLD) are hypomyelinating leucodystrophies of the central nervous system (CNS) with a very similar phenotype. PMD is an X-linked recessive condition caused by mutations, deletion duplication or triplication of the proteolipid protein 1 gene (PLP1). However, PMLD is a recessive autosomal hypomyelinating leukodystrophy caused by mutations of the GJC2 gene. In this study, we analyzed 5 patients belonging to 4 Tunisian families. Direct sequencing of GJC2 gene in all probands showed the same homozygous founder mutation c.-167A>G localized in the promoter region. We also generated two microsatellite markers GJC2 195GT and GJC2 76AC closed to the GJC2 gene to confirm the presence of a founder effect for this mutation. Haplotype study showed that the c.-167A>G promoter mutation occurred in a specific founder haplotype in Tunisian population. The identification of this founder mutation has important implications towards genetic counseling in relatives of these families and the antenatal diagnosis.  相似文献   

18.
Oligodendrocytes (OLs) are myelin-forming glial cells in the central nervous system (CNS) and their dysfunction causes neuropathies such as demyelinating diseases. Proteolipid protein 1 (PLP1) is an oligodendrocyte myelin-rich tetraspan membrane protein and aberration of the plp1 gene is known to be responsible for dysmyelinating Pelizaeus-Merzbacher disease (PMD). Among previously identified gene alternations, multiplication of the plp1 gene causes increased expression of PLP1, resulting in a phenotype with severe dysmyelination in human and also rodent models. Yet little is known about the relationship between increased PLP1 expression and oligodendrocyte precursor cell (OPC) differentiation and the intracellular molecular mechanism. Here we show that expression of PLP1 in OPCs markedly inhibits their differentiation, and that this inhibitory effect is effectively improved by inhibition of extracellular signal-regulated kinase (ERK) activity. Furthermore, in cocultures with dorsal root ganglion (DRG) neurons, ERK inhibition also improves PLP1-induced dysmyelination. Thus, ERK inhibition helps to improve defective OPC differentiation induced by PLP1 expression, suggesting that molecules belonging to ERK signaling cascade may be new PMD therapeutic targets.  相似文献   

19.
Pelizaeus-Merzbacher disease (PMD) is an X-linked, dysmyelinating disorder of the CNS. Duplications of the proteolipid protein (PLP) gene have been found in a proportion of patients, suggesting that, in addition to coding-region or splice-site mutations, overdosage of the gene can cause PMD. We show that the duplication can be detected by interphase FISH, using a PLP probe in five patients and their four asymptomatic carrier mothers. The extent of the duplication was analyzed in each family by interphase FISH, with probes from a 1. 7-Mb region surrounding the PLP gene between markers DXS83 and DXS94. A large duplication >=500 kb was detected, with breakpoints that differed, between families, at the proximal end. Distinct separation of the duplicated PLP signals could be seen only on metaphase chromosomes in one family, providing further evidence that different duplication events are involved. Quantitative fluorescent multiplex PCR was used to confirm the duplication in patients, by the detection of increased copy number of the PLP gene. Multiallelic markers from the duplicated region were analyzed, since the identification of two alleles in an affected boy would indicate a duplication. The majority of boys were homozygous for all four markers, compared with their mothers, who were heterozygous for one to three of the markers. These results suggest that intrachromosomal rearrangements may be a common mechanism by which duplications arise in PMD. One boy was heterozygous for the PLP marker, indicating a duplication and suggesting that interchromosomal rearrangements of maternal origin also can be involved. Since duplications are a major cause of PMD, we propose that interphase FISH is a reliable method for diagnosis and identification of female carriers.  相似文献   

20.
人类M6b基因一种剪接型cDNA的分子克隆   总被引:3,自引:1,他引:2  
夏家辉  刘春宇 《遗传学报》1999,26(5):439-446
蛋白脂蛋白基因突变导致Pelizaeus-Merzbacher病(PMD)和部分-X连锁的痉挛性截瘫。Olinsky等克隆了M6b的部分序列(U45955),该基因认为是PLP基因家族成员之一。我们以巢式PCR得到一约300bp的片段,测序为与U45955的5‘端局部重叠的新序列,拼接后得到1.642kb的序列,其中含有可编程265个氨基酸的开放阅读框。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号