首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origin of Ibetanull, the Ca2+ current of myotubes from mice lacking the skeletal dihydropyridine receptor (DHPR) beta1a subunit, was investigated. The density of Ibetanull was similar to that of Idys, the Ca2+ current of myotubes from dysgenic mice lacking the skeletal DHPR alpha1S subunit (-0.6 +/- 0.1 and -0.7 +/- 0.1 pA/pF, respectively). However, Ibetanull activated at significantly more positive potentials. The midpoints of the GCa-V curves were 16.3 +/- 1.1 mV and 11.7 +/- 1.0 mV for Ibetanull and Idys, respectively. Ibetanull activated significantly more slowly than Idys. At +30 mV, the activation time constant for Ibetanull was 26 +/- 3 ms, and that for Idys was 7 +/- 1 ms. The unitary current of normal L-type and beta1-null Ca2+ channels estimated from the mean variance relationship at +20 mV in 10 mM external Ca2+ was 22 +/- 4 fA and 43 +/- 7 fA, respectively. Both values were significantly smaller than the single-channel current estimated for dysgenic Ca2+ channels, which was 84 +/- 9 fA under the same conditions. Ibetanull and Idys have different gating and permeation characteristics, suggesting that the bulk of the DHPR alpha1 subunits underlying these currents are different. Ibetanull is suggested to originate primarily from Ca2+ channels with a DHPR alpha1S subunit. Dysgenic Ca2+ channels may be a minor component of this current. The expression of DHPR alpha1S in beta1-null myotubes and its absence in dysgenic myotubes was confirmed by immunofluorescence labeling of cells.  相似文献   

2.
We have examined the ability of BI (class A) Ca2+ channels, cloned from rabbit brain, to mediate excitation-contraction (E-C) coupling in skeletal muscle. Expression plasmids carrying cDNA encoding BI channels were microinjected into the nuclei of dysgenic mouse myotubes grown in primary culture. Ionic currents and intramembrane charge movements produced by the BI channels were recorded using the whole-cell patch- clamp technique. Injected myotubes expressed high densities of ionic BI Ca2+ channel current (average 31 pA/pF) but did not display spontaneous contractions, and only very rarely displayed evoked contractions. The expressed ionic current was pharmacologically distinguished from the endogenous L-type current of dysgenic skeletal muscle (Idys) by its insensitivity to the dihydropyridine antagonist (+)-PN 200-110. Peak BI Ca2+ currents activated with a time constant (tau a) of approximately 2 ms and inactivated with a time constant (tau h) of approximately 260 ms (20-23 degrees C). The time constant of inactivation (tau h) was not increased by substituting Ba2+ for Ca2+ as charge carrier, demonstrating that BI channels expressed in dysgenic myotubes do not undergo Ca(2+)-dependent inactivation. The average maximal Ca2+ conductance (Gmax) produced by the BI channels was quite large (approximately 534 S/F). In contrast, the average maximal charge movement (Qmax) produced in the same myotubes (approximately 2.7 nC/microF) was quite small, being barely larger than Qmax in control dysgenic myotubes (approximately 2.3 nC/microF). Thus, the ratio Gmax/Qmax for the BI channels was considerably higher than previously found for cardiac or skeletal muscle L-type Ca2+ channels expressed in the same system, indicating that neuronal BI Ca2+ channels exhibit a much higher open probability than these L-type Ca2+ channels.  相似文献   

3.
A novel calcium current in dysgenic skeletal muscle   总被引:9,自引:3,他引:6       下载免费PDF全文
The whole-cell patch-clamp technique was used to study voltage-dependent calcium currents in primary cultures of myotubes and in freshly dissociated skeletal muscle from normal and dysgenic mice. In addition to the transient, dihydropyridine (DHP)-insensitive calcium current previously described, a maintained DHP-sensitive calcium current was found in dysgenic skeletal muscle. This current, here termed ICa-dys, is largest in acutely dissociated fetal or neonatal dysgenic muscle and also in dysgenic myotubes grown on a substrate of killed fibroblasts. In dysgenic myotubes grown on untreated plastic culture dishes, ICa-dys is usually so small that it cannot be detected. In addition, ICa-dys is apparently absent from normal skeletal muscle. From a holding potential of -80 mV. ICa-dys becomes apparent for test pulses to approximately -20 mV and peaks at approximately +20 mV. The current activates rapidly (rise time approximately 5 ms at 20 degrees C) and with 10 mM Ca as charge carrier inactivates little or not at all during a 200-ms test pulse. Thus, ICa-dys activates much faster than the slowly activating calcium current of normal skeletal muscle and does not display Ca-dependent inactivation like the cardiac L-type calcium current. Substituting Ba for Ca as the charge carrier doubles the size of ICa-dys without altering its kinetics. ICa-dys is approximately 75% blocked by 100 nM (+)-PN 200-110 and is increased about threefold by 500 nM racemic Bay K 8644. The very high sensitivity of ICa-dys to these DHP compounds distinguishes it from neuronal L-type calcium current and from the calcium currents of normal skeletal muscle. ICa-dys may represent a calcium channel that is normally not expressed in skeletal muscle, or a mutated form of the skeletal muscle slow calcium channel.  相似文献   

4.
Immature skeletal muscle cells, both in vivo and in vitro, express a high density of T type calcium current and a relatively low density of the dihydropyridine receptor, the protein thought to function as the Islow calcium channel and as the voltage sensor for excitation- contraction coupling. Although the role of the voltage sensor in eliciting elevations of myoplasmic, free calcium (calcium transients) has been examined, the role of the T type current has not. In this study we examined calcium transients associated with the T type current in cultured myotubes from normal and dysgenic mice, using the whole cell configuration of the patch clamp technique in conjunction with the calcium indicator dye Fluo-3. In both normal and dysgenic myotubes, the T type current was activated by weak depolarizations and was maximal for test pulses to approximately -20 mV. In normal myotubes that displayed T type calcium current, the calcium transient followed the amplitude and the integral of the current at low membrane potentials (- 40 to -20 mV) but not at high potentials, where the calcium transient is caused by SR calcium release. The amplitude of the calcium transient for a pulse to -20 mV measured at 15 ms after depolarization represented, on average, 4.26 +/- 0.68% (n = 19) of the maximum amplitude of the calcium transient elicited by strong, 15-ms test depolarizations. In dysgenic myotubes, the calcium transient followed the integral of the calcium current at all test potentials, in cells expressing only T type current as well as in cells possessing both T type current and the L type current Idys. Moreover, the calcium transient also followed the amplitude and time course of current in dysgenic myotubes expressing the cardiac, DHP-sensitive calcium channel. Thus, in those cases where the transient appears to be a consequence of calcium entry, it has the same time course as the integral of the calcium current. Inactivation of the T type calcium current with 1-s prepulses, or block of the current by the addition of amiloride (0.3-1.0 mM) caused a reduction in the calcium transient which was similar in normal and dysgenic myotubes. To allow calculation of expected changes of intracellular calcium in response to influx, myotubes were converted to a roughly spherical shape (myoballs) by adding 0.5 microM colchicine to culture dishes of normal cells. Calcium currents and calcium transients recorded from myoballs were similar to those in normal myotubes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In noncontracting, dysgenic murine muscle, excitation is uncoupled from contraction. To test whether the gene lesion is expressed as a defect in the regulation of the intracellular free Ca2+ levels, cultured normal and dysgenic muscle at various stages of development (proliferative myoblasts, early, late, and mature myotubes) were exposed to increasing increments (0.5-mM steps) of extracellular Ca2+ in ionophore A23187-Ca2+-EGTA-buffered media. Normal and dysgenic muscle at all stages (except myoblast) displayed contractures at approximately 500 microM free Ca2+ and higher. Experiments using finer increments of Ca2+ and different ionophore concentrations indicated an external Ca2+ threshold for contracture at 265 microM Ca2+ for early and late myotubes and 47-78 microM for mature normal and dysgenic myotubes. Low extracellular concentrations of calcium (14 microM and 0.76 nM) caused elongation of both normal and dysgenic myotubes. Mature cells were depolarized by exposure to increasing extracellular K+ and monitored by intracellular recording; normal and dysgenic myotubes showed similar reductions in membrane potentials. Depolarization to -35 mV elicited contractures in normal myotubes, but even depolarization to -9 mV in dysgenic cells elicited no response. Thus steady-state depolarization of dysgenic muscle does not cause contractures, which can, however, be elicited by increasing the intracellular free Ca2+. These results offer new evidence for a possible defect in the regulation of Ca2+ levels in dysgenic muscle.  相似文献   

6.
Myocardial cells have two types of Ca channels commonly called T-type and L-type. Whole cell Ca channel currents in guinea pig atrial myocytes can be separated and quantitated by analyzing channel closing kinetics after a brief depolarization (tail current analysis). L-type Ca channels deactivate rapidly when the membrane is repolarized and T-type Ca channels deactivate relatively slowly. Ca channel block by the therapeutically useful Ca channel antagonists is voltage dependent, so it is desirable to study block of both channel types over an extended voltage range. Tail current analysis allows this and was used to study block of both types of Ca channels under identical conditions. Amiodarone, bepridil, and cinnarizine block T-type Ca channels more potently than L-type Ca channels when binding equilibrates at normal diastolic potentials (approximately -90 mV). None of these drugs is a selective blocker of T-type Ca channels because block of L-type Ca channels is enhanced when cells are almost completely depolarized. Although weak block of T-type Ca channels by 1,4-dihydropyridines has usually been reported, we found that felodipine blocks these channels with high affinity. When most T-type Ca channels are inactivated, the apparent dissociation constant (KI) is 13 nM. Felodipine also blocks T-type Ca channels in GH3 cells (a cell line derived from rat anterior pituitary), but KI = 700 nM. Thus, T-type Ca channels in different cell types are pharmacologically distinct. Felodipine can block L-type Ca channels in atrial cells more potently than T-type Ca channels, but block of L-type Ca channels is potent only at depolarized potentials; block of both channel types is comparable at normal diastolic membrane potentials. Felodipine and the 1,4-dihydropyridines isradipine and (-)-202-791 are approximately equipotent at blocking T-type Ca channels, but differ substantially in potency for block of L-type Ca channels. Block of T-type Ca channels may account for some of the pharmacological effects of 1,4-dihydropyridines and for the antiarrhythmic activity of amiodarone and bepridil.  相似文献   

7.
We have studied Ca2+ currents in ascidian eggs using the whole-cell clamp technique. T and L components, as observed in somatic cells, are present and the L-type current predominates. Since the IV relationship for these inward currents overlap at -30 mV, separation of the two components using different voltage regimes is not feasible. Increasing external Ca2+ results in larger currents. The L-type current decreases in a dose-dependent fashion in the presence of Mn2+ and Nifedipine, while the T-type current is inhibited in Ni2+. When Ba2+ was used as the carrier ion, channel kinetics and conductance were completely altered. Considering the density and kinetics of L-type channels in unfertilized eggs it is probable they play an important role in regulating cytosolic Ca2+ during early developmental processes.  相似文献   

8.
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.  相似文献   

9.
We report here that L-type Ca2+ channels activate rapidly in myotubes expressing current at high density and slowly in myotubes expressing current at low density. Partial block of the current in individual cells does not slow activation, indicating that Ca2+ influx does not link activation rate to current density. Activation rate is positively correlated with the density of gating charge (Qmax) associated with the L-type Ca2+ channels. The range of values for Qmax, and the relationship between activation rate and Qmax, are similar for myotubes expressing native or recombinant L-type Ca2+ channels, whereas peak Ca2+ current density is approximately 3-fold higher for native channels. Taken together, these results suggest that Ca2+ channel density can govern activation kinetics. Our findings have important important implications for studies of ion channel function because they suggest that biophysical properties can be significantly influenced by channel density, both in heterologous expression systems and in native tissues.  相似文献   

10.
In adrenal zona glomerulosa cells, calcium entry is crucial for aldosterone production and secretion. This influx is stimulated by increases of extracellular potassium in the physiological range of concentrations and by angiotensin II (Ang II). The high threshold voltage-activated (L-type) calcium channels have been shown to be the major mediators for the rise in cytosolic free calcium concentration, [Ca2+]c, observed in response to a depolarisation by physiological potassium concentrations. Paradoxically, both T- and L-type calcium channels have been shown to be negatively modulated by Ang II after activation by a sustained depolarisation. While the modulation of T-type channels involves protein kinase C (PKC) activation, L-type channel inhibition requires a pertussis toxin-sensitive G protein. In order to investigate the possibility of additional modulatory mechanisms elicited by Ang II on L-type channels, we have studied the effect of PKC activation or tyrosine kinase inhibition. Neither genistein or MDHC, two strong inhibitors of tyrosine kinases, nor the phorbol ester PMA, a specific activator of PKC, affected the Ang II effect on the [Ca2+]c response and on the Ba2+ currents elicited by cell depolarisation with the patch-clamp method. We propose a model describing the mechanisms of the [Ca2+]c modulation by Ang II and potassium in bovine adrenal glomerulosa cells.  相似文献   

11.
B A Adams  K G Beam 《FASEB journal》1990,4(10):2809-2816
Muscular dysgenesis (mdg) is a lethal autosomal, recessive mutation of mice. Skeletal muscle from dysgenic mice is paralyzed due to the failure of excitation-contraction (E-C) coupling. Considerable evidence indicates that this failure results from the absence of a specific gene product, the alpha 1 subunit of the skeletal muscle receptor for dihydropyridine calcium channel modifiers. This dihydropyridine receptor is hypothesized to function in E-C coupling of normal skeletal muscle as the voltage sensor that triggers calcium release from the sarcoplasmic reticulum and thereby causes contraction. The skeletal muscle dihydropyridine receptor is also postulated to function as the ion channel responsible for a slowly activating, dihydropyridine-sensitive calcium current (Islow). Dysgenic skeletal muscle lacks Islow but expresses, at low levels, a distinctly different dihydropyridine-sensitive calcium current (Idys). The channel protein underlying Idys is incapable of serving as a voltage sensor for E-C coupling. Studies using dysgenic skeletal muscle have provided significant insight into the role of dihydropyridine receptors in E-C coupling.  相似文献   

12.
Intramembrane charge movement and Ca2+ release from sarcoplasmic reticulum was studied in foetal skeletal muscle cells from normal and mutant mice with 'muscular dysgenesis' (mdg/mdg). It was shown that: 1) unlike normal myotubes, in dysgenic myotubes membrane depolarization did not evoke calcium release from the sarcoplasmic reticulum; 2) when all ionic currents are pharmacologically suppressed, membrane depolarization produced an asymmetric intramembrane charge movement in both normal and dysgenic myotubes. The relationship between the membrane potential and the amount of charge movement in these muscles could be expressed by a two-state Boltzmann equation; 3) the maximum amount of charge movement associated with depolarization (Qon max) in normal and in dysgenic myotubes was 6.3 +/- 1.4 nC/microF (n = 6) and 1.7 +/- 0.3 nC/microF (n = 6) respectively; 4) nifedipine (1-20 microM) applied to the bath reduced Qon max by about 40% in normal muscle cells. In contrast, the drug had no significant effect on the charge movement of dysgenic myotubes; and 5) the amount of nifedipine-resistant charge movement in normal and in dysgenic myotubes was 3.5 nC/microF (n = 3) and 1.7 nC/microF 1 maximum (n = 3), respectively.  相似文献   

13.
The dihydropyridine (DHP) receptor of normal skeletal muscle is hypothesized to function as the voltage sensor for excitation-contraction (E-C) coupling, and also as the calcium channel underlying a slowly activating, DHP-sensitive current (termed ICa-s). Skeletal muscle from mice with muscular dysgenesis lacks both E-C coupling and ICa-s. However, dysgenic skeletal muscle does express a small DHP-sensitive calcium current (termed ICa-dvs) which is kinetically and pharmacologically distinct from ICa-s. We have examined the ability of ICa-dys, or the DHP receptor underlying it, to couple depolarization and contraction. Under most conditions ICa-dys is small (approximately 1 pA/pF) and dysgenic myotubes do not contract in response to sarcolemmal depolarization. However, in the combined presence of the DHP agonist Bay K 8644 (1 microM) and elevated external calcium (10 mM), ICa-dys is strongly potentiated and some dysgenic myotubes contract in response to direct electrical stimulation. These contractions are blocked by removing external calcium, by adding 0.5 mM cadmium to the bath, or by replacing Bay K 8644 with the DHP antagonist (+)-PN 200-110. Only myotubes having a density of ICa-dys greater than approximately 4 pA/pF produce detectible contractions, and the strength of contraction is positively correlated with the density of ICa-dys. Thus, unlike the contractions of normal myotubes, the contractions of dysgenic myotubes require calcium entry. These results demonstrate that the DHP receptor underlying ICa-dys is unable to function as a "voltage sensor" that directly couples membrane depolarization to calcium release from the sarcoplasmic reticulum.  相似文献   

14.
The Ca2+ currents, charge movements, and intracellular Ca2+ transients of mouse dihydropyridine receptor (DHPR) beta 1-null myotubes expressing a mouse DHPR beta 1 cDNA have been characterized. In beta 1-null myotubes maintained in culture for 10-15 days, the density of the L-type current was approximately 7-fold lower than in normal cells of the same age (Imax was 0.65 +/- 0.05 pA/pF in mutant versus 4.5 +/- 0.8 pA/pF in normal), activation of the L-type current was significantly faster (tau activation at +40 mV was 28 +/- 7 ms in mutant versus 57 +/- 8 ms in normal), charge movements were approximately 2.5-fold lower (Qmax was 2.5 +/- 0.2 nC/microF in mutant versus 6.3 +/- 0.7 nC/microF in normal), Ca2+ transients were not elicited by depolarization, and spontaneous or evoked contractions were absent. Transfection of beta 1-null cells by lipofection with beta 1 cDNA reestablished spontaneous or evoked contractions in approximately 10% of cells after 6 days and approximately 30% of cells after 13 days. In contracting beta 1-transfected myotubes there was a complete recovery of the L-type current density (Imax was 4 +/- 0.9 pA/pF), the kinetics of activation (tau activation at +40 mV was 64 +/- 5 ms), the magnitude of charge movements (Qmax was 6.7 +/- 0.4 nC/microF), and the amplitude and voltage dependence of Ca2+ transients evoked by depolarizations. Ca2+ transients of transfected cells were unaltered by the removal of external Ca2+ or by the block of the L-type Ca2+ current, demonstrating that a skeletal-type excitation-contraction coupling was restored. The recovery of the normal skeletal muscle phenotype in beta 1-transfected beta-null myotubes shows that the beta 1 subunit is essential for the functional expression of the DHPR complex.  相似文献   

15.
L-type and T-type Ca2+ current in cultured ventricular guinea pig myocytes   总被引:1,自引:0,他引:1  
The aim of this investigation was to study L-type and T-type Ca(2+) current (I(CaL) and I(CaT)) in short-term cultured adult guinea pig ventricular myocytes. The isolated myocytes were suspended in serum-supplemented medium up to 5 days. Using whole-cell patch clamp techniques ICaL and ICaT were studied by applying voltage protocols from different holding potentials (-40 and -90 mV). After 5 days in culture the myocytes still showed their typical rod shaped morphology but a decline in cell membrane capacitance (26 %). The peak density of ICaT was reduced significantly between day 0 (-1.6+/-0.37 pA/pF, n=9) and day 5 (-0.4+/-0.13 pA/pF, n=11), whereas peak ICaL density revealed no significant differences during culturing. The I(CaT)/I(CaL) ratio dropped from 0.13 at day 0 to 0.05 at day 5. Compared with day 0 I(CaL) the steady state inactivation curve of day 1, day 3 and day 5 myocytes was slightly shifted to more negative potentials. Our data indicate that guinea pig ventricular L-type and T-type Ca(2+) channels are differently regulated in culture.  相似文献   

16.
The pharmacological and single-channel properties of Ca2+ channels were studied in the somata and dendrites of adult cerebellar Purkinje cells. The Ca2+ channels were exclusively of the high threshold type: low threshold Ca2+ channels were not found. These high threshold channels were not blocked by omega-conotoxin GVIA and were inhibited rather than activated by BAY K 8644. They were therefore pharmacologically distinct from high threshold N- and L-type channels. Funnel web spider toxin was an effective blocker. The channels opened to conductance levels of 9, 14, and 19 pS (in 110 mM Ba2+). These slope conductances were in the range of those reported for N- and L-type channels. Our results are in agreement with previous reports suggesting that Ca2+ channels in Purkinje cells can be classified as P-type channels according to their pharmacology. The results also suggest that distinctions among Ca2+ channel types based on the single-channel conductance are not definitive.  相似文献   

17.
Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle.  相似文献   

18.
Participation of two types of Ca2+ channels (T- and L-types) in the sustained increase of cytosolic-free Ca2+ concentration [( Ca2+]i) was studied in thyrotropin-releasing hormone (TRH)-stimulated clonal GH3 pituitary cells. The effects of Ca2+ channel blockers were analyzed by measuring Ca2+ channel current and [Ca2+]i, using whole-cell voltage-clamp and Fura-2 fluorometry, respectively. Phenytoin (100 microM) and Ni2+ (100 microM) selectively blocked T-type Ca2+ channels and suppressed the TRH-induced sustained [Ca2+]i increase in single cells. Synthetic omega-conotoxin (omega-CgTX, 2 microM) preferentially blocked L-type Ca2+ channels, but it did not suppress the TRH-induced sustained [Ca2+]i increase. The present results suggest that the sustained elevations of [Ca2+]i triggered by TRH may be mediated by T-type Ca2+ channels in GH3 cells.  相似文献   

19.
Skeletal muscle obtained from mice that lack the type 1 ryanodine receptor (RyR-1), termed dyspedic mice, exhibit a 2-fold reduction in the number of dihydropyridine binding sites (DHPRs) compared with skeletal muscle obtained from wild-type mice (Buck, E. D., Nguyen, H. T., Pessah, I. N., and Allen, P. D. (1997) J. Biol. Chem. 272, 7360-7367 and Fleig, A., Takeshima, H., and Penner, R. (1996) J. Physiol. (Lond.) 496, 339-345). To probe the role of RyR-1 in influencing L-type Ca(2+) channel (L-channel) expression, we have monitored functional L-channel expression in the sarcolemma using the whole-cell patch clamp technique in normal, dyspedic, and RyR-1-expressing dyspedic myotubes. Our results indicate that dyspedic myotubes exhibit a 45% reduction in maximum immobilization-resistant charge movement (Q(max)) and a 90% reduction in peak Ca(2+) current density. Calcium current density was significantly increased in dyspedic myotubes 3 days after injection of cDNA encoding either wild-type RyR-1 or E4032A, a mutant RyR-1 that is unable to restore robust voltage-activated release of Ca(2+) from the sarcoplasmic reticulum (SR) following expression in dyspedic myotubes (O'Brien, J. J., Allen, P. D., Beam, K., and Chen, S. R. W. (1999) Biophys. J. 76, A302 (abstr.)). The increase in L-current density 3 days after expression of either RyR-1 or E4032A occurred in the absence of a change in Q(max). However, Q(max) was increased 85% 6 days after injection of dyspedic myotubes with cDNA encoding the wild-type RyR-1 but not E4032A. Because normal and dyspedic myotubes exhibited a similar density of T-type Ca(2+) current (T-current), the presence of RyR-1 does not appear to cause a general overall increase in protein synthesis. Thus, long-term expression of L-channels in skeletal myotubes is promoted by Ca(2+) released through RyRs occurring either spontaneously or during excitation-contraction coupling.  相似文献   

20.
Muscular dysgenesis (mdg) in the mouse is an autosomal recessive mutation, expressed in the homozygous state (in vivo and in vitro) as an absence of skeletal muscle contraction. The distribution of acetylcholine receptors (ACh R) in the diaphragms of phenotypically normal and dysgenic (mdg/mdg) embryos was studied from the 14th to 19th day of gestation by binding of 125I-alpha-bungarotoxin to the muscle, followed by autoradiography of longitudinally sectioned hemidiaphragms and/or of isolated muscle fibers. Localization of ACh R at putative motor end-plate regions begins 14 to 15 days in utero in both normal and dysgenic diaphragms. The distribution of high ACh R density patches is aberrantly scattered beyond the normal innervation pattern in dysgenic diaphragms. Isolated mutant fibers possess (1) multiple ACh R clusters, up to five per single fiber, (2) larger clusters of more variable morphology and variable receptor density than normal clusters, and (3) higher levels of extrajunctional receptors than normal fibers. These autoradiographic results correlate well with higher total level of toxin binding sites per diaphragm and per milligram protein in dysgenic vs normal muscle, as quantified from gamma counting of sucrose density gradient isolation of 125I-toxin-ACh R complexes. The dispersed distribution of ACh R patches on dysgenic muscle may be correlated with extensive phrenic nerve branching as demonstrated by silver impregnation technique. We suggest that the aberrant ACh R cluster distribution is a result of multiple innervation of single fibers from the branched nerve terminals. Possible causes of the excessive nerve branching in the mutant are discussed in light of generalized nerve sprouting found in paralyzed muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号