首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper is an essential element for the function of metabolic pathways in many living organisms like photosynthesis in plants. But, for the last decades, anthropogenic sources and release of Cu lead to environmental pollution particularly in aquatic ecosystems. The aquatic plant, Myriophyllum alterniflorum, known as a bioindicator of metal pollution, could be used as biomonitor. The aim of this study is to evaluate biomarkers responses of watermilfoil during Cu pollution at high environmental levels (100 μg l−1 CuSO4) in controlled conditions. Morphological and anatomical features like a new double endodermis (DE) layer were evidenced in response to Cu treatment. Moreover, physiological parameters like pigments contents, osmotic potential and proline content present a differential response to Cu stress in young and old leaves of watermilfoil. Finally, despite a rapid and strong phytoaccumulation of Cu, only young leaves are slightly affected in their cell membrane integrity as indicated by MDA content. In comparison with the Cu effect on other aquatic macrophytes, M. alterniflorum develops particular protection mechanisms like the ROS scavenging using proline rather than carotenoids, the reduction of water loss with the DE and the heavy metal elimination through senescence to protect preferentially the photosynthetic components of the young leaves and the main-stem elongation. Due to its Cu sensitivity, M. alterniflorum appears as important in the field of environmental studies using plant biomarkers.  相似文献   

2.
Plantago ovata Forsk. (isabgol) is a valuable medicinal plant; its seeds and shell have a significant role in pharmacy as a laxative compound. Increasing soil contamination with cadmium (Cd) is one of the major concerns and is responsible for toxic effects in plants. This investigation was aimed to analyze the role of biofertilizers in alleviation of cadmium stress, given at the rate of 0, 50, and 100 mg kg−1 of soil. The plants of isabgol, were grown in pots with and without application of AM fungi and Azotobacter (alone and combination). Cadmium showed negative effect on growth and biochemical component whereas proline and MDA content increase with increasing cadmium concentration. Addition of bio-fertilizer showed better growth and higher pigment concentration under cadmium stress as compared to the control. The dual inoculation of AM fungi and Azotobacter was found to be the best in reduction of cadmium stress and promotion of growth parameters.  相似文献   

3.
1. Oreochromis aureus (Steindachner) was exposed to two concentrations of lead and cadmium for 24 hr and 1 week to assess the effects of these pollutants on haematological parameters.2. Plasma osmolality was found to be the most sensitive blood parameter, affected before other parameters changed.3. Cadmium appears to be more toxic to O. aureus than lead, having an adverse effect on blood parameters earlier than lead.4. In the earlier stages of toxicity cadmium appears to have a more pronounced effect on haemoglobin concentration than lead.5. Cadmium does not depress erythrocyte counts but lead does.  相似文献   

4.
Effect of different concentrations of cadmium (0, 5,15, 30, 50 μg/g of soil) and lead (0,25, 50,100,200 μg/g of soil) on morphological and anatomical features ofTrigonella foenum graecum Linn, was studied at pre-flowering, flowering and post flowering stages. Morphological attributes, like number of leaves per plant, total leaf area of the plant and single leaf area, dry mass of stem, root and leaf, length of shoot, root and plant, size of stomata and stomatal pore, and the density of stomata on both epidermises were significantly reduced under metal stress at all the developmental stages. Trichome length on both epidermises increased while their density decreased under metal stress. Under cadmium stress, proportion of pith and vasculature decreased but cortex increased in the stem. Under lead stress, proportion of pith and vasculature increased but cortex decreased in the stem. In the root, proportion of vasculature and pith increased and cortex decreased in response to both cadmium and lead stresses. Dimensions of vessel element and xylem fibre in the wood of stem and root decreased under the cadmium and lead stresses. Decrease in density of vessel element in the stem and root with advancement of age was more pronounced in plants grown under cadmium and lead stresses.  相似文献   

5.
Cassia italica Mill is an important medicinal plant within the family Fabaceae. Pot experiment was conducted to evaluate cadmium stress induced changes in physiological and biochemical attributes in C. italica with and without arbuscular mycorrhizal fungi (AMF). Cadmium stressed plant showed reduced chlorophyll pigment and protein content while AMF inoculation enhanced the chlorophyll and protein content considerably. AMF also ameliorated the cadmium stress induced reduction in total chlorophyll and protein contents by 19.30% and 38.29%, respectively. Cadmium stress enhanced lipid peroxidation while AMF inoculation reduced lipid peroxidation considerably. Increase in proline and phenol content was observed due to cadmium stress and AMF inoculation caused a further increase in proline and phenol content ensuring better growth under stressed conditions. AMF alone also enhanced proline and phenol content. Activity of antioxidant enzymes enhanced under cadmium treatment and AMF inoculation further enhanced their activity thereby strengthening the antioxidant system. Enhanced activities of antioxidants and increased accumulation of osmolytes help plants to avoid damaging impact of oxidative damage. The research has shown that AMF inoculation mitigated the negative impact of stress by reducing the lipid peroxidation and enhancing the antioxidant activity. The present study strongly supports employing AMF as the biological mean for enhancing the cadmium stress tolerance of C. italica.  相似文献   

6.
Pteris vittata is known as an arsenic hyperaccumulator, but there is little information about its tolerance to cadmium and on its ability to accumulate this heavy metal. Our aim was to analyse the accumulation capacity, oxidative stress and antioxidant response of this fern after cadmium treatments. Cadmium content, main markers of oxidative stress and antioxidant response were detected in leaves of plants grown in hydroponics for both short- (5 days) and long- (15 days) term exposure to 0 (control) 60 and 100 μM CdCl2. In leaves, the concentration of cadmium and oxidative stress were parallel with the increase of cadmium exposure. In the short-term exposure, antioxidant response was sufficient to contrast cadmium phytotoxicity only in 60 μM cadmium-treated plants. In the long-term exposure all treated plants, in spite of the increase in activity of some peroxide-scavenging enzymes, showed a significant increase in oxidative damage. As in the long-term stress markers were comparable in all treated plants, with no clear correlation with hydrogen peroxide content, at least part of cadmium-induced oxidative injury seems not mediated by H2O2. Based on our studies, P. vittata, able to uptake relatively high concentrations of cadmium, is only partially tolerant to this heavy metal.  相似文献   

7.
Maize stover, including stalks, leaves, and cobs, has potential utility as a cellulosic biofeedstock. Understanding how total stover ethanol potential is affected by the proportion and quality of major plant components would facilitate the genetic improvement of stover quality and inform decisions regarding which plant parts should be targeted for harvesting. Our objectives were to determine how the proportion and composition of plant components affected ethanol potential and whether there are early season predictors of stover quality at maturity. Twenty-three hybrids were evaluated including 20 from a factorial mating design between five silage inbred lines and four commercial inbreds and a brown-midrib3, a Leafy1, and a commercial grain hybrid checks. Plants were harvested and dissected into component parts at developmental stages vegetative 3, vegetative 12, reproductive 3, and reproductive 6 (R6). Tissues were evaluated for acid detergent fiber (ADF), neutral detergent fiber (NDF), and NDF digestibility (NDFD). Stalk was the largest fraction of whole plant dry matter (46.2%) and had the lowest NDFD (3,750 g/kg) at R6. No relationship was found between stalk ADF at early developmental stages and whole plant ADF at R6, suggesting that quality at early developmental stages is not indicative of quality at physiological maturity. Differences were observed among hybrids for ADF and NDF for most plant parts evaluated. Hybrid-by-developmental stage and hybrid-by-plant part interactions were statistically significant. This indicates that there is minimal opportunity to identify superior hybrids for biofuel production based on the proportion of total biomass represented by a plant part and its quality at early developmental stages. Maximum conversion efficiency is attained when leaves are harvested compared to other tissue types at physiological maturity.  相似文献   

8.
Cadmium (Cd), a life threatening hazardous heavy metal is abundant in nature. Cd amounts are greater in leaves than other plant parts, and it shows considerable effects on photosynthesis. Nitric oxide (NO), a free radical present in living organisms, is now known as an important signaling molecule playing various physiological processes in plants. In this study, the possible ameliorative effect of NO on photosynthesis was examined on pea seedlings grown under Cd stress. Results showed that chlorophyll, net photosynthetic rate, transpiration rate, stomatal conductance, photochemical efficiency of Photosystem II and Photosystem I decreased, and Fo and non-photochemical parameters for PSII and PSI significantly increased due to Cd stress. This suggests that Cd affects the photochemistry efficiency at both the PSII and PSI levels. Nitric oxide supplementation through SNP ameliorated Cd stress by enhancing all the above mentioned parameters but causing a reduction in the Fo, and non-photochemical parameters of PSII and PSI in pea plants. These data indicate that the exogenous application of NO was useful in mitigating Cd-induced damage to photosynthesis in pea seedling.  相似文献   

9.
Maize stover, including stalks, leaves, and cobs, has potential utility as a cellulosic biofeedstock. Understanding how total stover ethanol potential is affected by the proportion and quality of major plant components would facilitate the genetic improvement of stover quality and inform decisions regarding which plant parts should be targeted for harvesting. Our objectives were to determine how the proportion and composition of plant components affected ethanol potential and whether there are early season predictors of stover quality at maturity. Twenty-three hybrids were evaluated including 20 from a factorial mating design between five silage inbred lines and four commercial inbreds and a brown-midrib3, a Leafy1, and a commercial grain hybrid checks. Plants were harvested and dissected into component parts at developmental stages vegetative 3, vegetative 12, reproductive 3, and reproductive 6 (R6). Tissues were evaluated for acid detergent fiber (ADF), neutral detergent fiber (NDF), and NDF digestibility (NDFD). Stalk was the largest fraction of whole plant dry matter (46.2%) and had the lowest NDFD (375.0 g/kg) at R6. No relationship was found between stalk ADF at early developmental stages and whole plant ADF at R6, suggesting that quality at early developmental stages is not indicative of quality at physiological maturity. Differences were observed among hybrids for ADF and NDF for most plant parts evaluated. Hybrid-by-developmental stage and hybrid-by-plant part interactions were statistically significant. This indicates that there is minimal opportunity to identify superior hybrids for biofuel production based on the proportion of total biomass represented by a plant part and its quality at early developmental stages. Maximum conversion efficiency is attained when leaves are harvested compared to other tissue types at physiological maturity.  相似文献   

10.
Cadmium is a well-known environmental pollutant with distinctly toxic effects on plants. It can displace certain essential metals from a wealth of metalloproteins, and thus disturb many normal physiological processes and cause severe developmental aberrant. The harmful effects of cadmium stress include, but are not limited to: reactive oxygen species overproduction, higher lipid hydroperoxide contents, and chloroplast structure change, which may lead to cell death. Plants have developed diverse mechanisms to alleviate environmental cadmium stress, e.g., cadmium pump and transporting cadmium into the leaf vacuoles. This mini-review focuses on the current research into understanding the cellular mechanisms of cadmium toxicity on cytoskeleton, vesicular trafficking and cell wall formation in plants.  相似文献   

11.
Experiments were conducted to evaluate cadmium (Cd) stress-induced changes in growth, antioxidants and lipid composition of Solanum lycopersicum with and without arbuscular mycorrhizal fungi (AMF). Cadmium stress (50 μM) caused significant changes in the growth and physio-biochemical attributes studied. AMF mitigated the deleterious impact of Cd on the parameters studied. Cadmium stress increased malonaldehyde and hydrogen peroxide production but AMF reduced these parameters by mitigating oxidative stress. The activity of antioxidant enzymes enhanced under Cd treatment and AMF inoculation further enhanced their activity, thus strengthening the plant’s defense system. Proline and phenol content increased in Cd-treated as well as AMF-inoculated plants providing efficient protection against Cd stress. Cadmium treatment resulted in great alterations in the main lipid classes leading to a marked change in their composition. Cadmium stress caused a significant reduction in polyunsaturated fatty acids resulting in enhanced membrane leakage. The present study supports the use of AMF as a biological means to ameliorate Cd stress-induced changes in tomato.  相似文献   

12.
The effect of growing five different cultivars of pepper plants (Capsicum annuum L.) with CdCl2 concentrations ranging from 0.125 to 0.5 mM on different physiological parameters, and antioxidative enzyme activities of leaves was studied. On the basis of growth parameters, pepper plants were relatively tolerant to cadmium, although metal concentrations higher than 0.125 mM produced a significant inhibition of growth, net photosynthesis, and water use efficiency. Different sensitivities to Cd++ ions were observed among cultivars, Abdera being the most resistant to cadmium stress, while Mondo and Herminio were the most sensitive cultivars. Cadmium concentrations of 0.5 mM produced an increase in the activity of glutathione reductase, and guaiacol peroxidase in most cultivars, while catalase and superoxide dismutase (SOD) were slightly depressed. The analysis of the SOD activity pattern by native-PAGE showed the presence in most cultivars of four SODs which were identified as Mn–SOD, Fe–SOD, CuZn–SOD I and CuZn–SOD II. However, the two CuZn–SODs were absent in the Cd-sensitive cv. Herminio. The growth of pepper plants with 0.5 mM cadmium inhibited the activity of CuZn–SODs in all cultivars, while the activity of Mn- and Fe–SOD was enhanced. The activity of NADPH-dehydrogenases (glucose-6-P-dehydrogenase, 6-phosphogluconate dehydrogenase, NADP–isocitrate dehydrogenase and malic enzyme) showed a Cd-dependent enhancement in most cultivars, the highest increase being observed in the tolerant cv. Abdera. These results suggest that in pepper plants the tolerance to Cd toxicity is more dependent on the availability of NADPH than on its antioxidant capacity.  相似文献   

13.
The effect of cadmium on the formation of the photosynthetic apparatus of greening barley (Hordeum vulgare L. cv. Triangel) leaves has been investigated. Cadmium treatment of dark-grown leaves strongly reduced the extent of chlorophyll accumulation during greening. Low-temperature fluorescence emission showed, however, that neither the synthesis nor photoconversion of protochlorophyllide was inhibited, although a blue shift of the main fluorescence emission from 685 to 668 mm was found. Chlorophyll fluorescence lifetime was followed by measuring the phase-shift angle of modulated emission. Whereas this parameter normally decreases rapidly during greening, this change proceeded noticeably slower with increasing severity according to cadmium concentration. Cadmium also decreased the variable part of fluorescence induction. These results suggest that the cadmium in greening leaves, rather than interfering with chlorophyll biosynthesis, acts mainly by disturbing the integration of chlorophyll molecules into the stable complexes required for normal functional photoysnthetic activity.  相似文献   

14.
Pot experiments were conducted to investigate the role of selenium in alleviating cadmium stress in Solanum lycopersicum seedlings. Cadmium (150 mg L?1) treatment caused a significant reduction in growth in terms of height and biomass accumulation and affected chlorophyll pigments, gas exchange parameters, and chlorophyll fluorescence. Selenium (10 μM) application mitigated the adverse effects of cadmium on growth, chlorophyll and carotenoid contents, leaf relative water content, and other physiological attributes. Lipid peroxidation and electrolyte leakage increased because of cadmium treatment and selenium-treated plants exhibited considerable reduction because of the decreased production of hydrogen peroxide in them. Cadmium-treated plants exhibited enhanced activity of antioxidant enzymes that protected cellular structures by neutralizing reactive free radicals. Supplementation of selenium to cadmium-treated plants (Cd + Se) further enhanced the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) by 19.69, 31.68, 33.14, and 54.47%, respectively. Osmolytes, including proline and glycine betaine, increased with selenium application, illustrating their role in improving the osmotic stability of S. lycopersicum under cadmium stress. More importantly, selenium application significantly reduced cadmium uptake. From these results, it is clear that application of selenium alleviates the negative effects of cadmium stress in S. lycopersicum through the modifications of osmolytes and antioxidant enzymes.  相似文献   

15.
Genetically engineered seedlings obtained from self-fertilized transgenic tobacco (Nicotiana tabacum) contained and expressed the mouse metallothionein and kanamycin resistance marker genes and were more tolerant to cadmium stress than untransformed controls. Cadmium accumulation in leaves of transgenic seedlings exposed to a low, field-like Cd concentration (0.02 micromolar) was about 20% lower than that in untransformed controls. Genetic analysis of R1 and R2 progeny showed inheritance of the marker gene to be as a dominant Mendelian trait. These results suggest the possibility of developing transgenic plants with modified tolerance to heavy metal stress and food crops having lower Cd content.  相似文献   

16.
The sunflower (Helianthus annuus L. cv. PAC 36) seedlings were inoculated with plant growth promoting rhizobacteria (PGPR), viz. Azotobacter chroococcum (A+), Bacillus polymyxa (B+), separately and in combination of the two (AB+). Relative water content and seedling growth were maximum in AB+ seedlings under control. Water stress significantly decreased the RWC, growth and dry mass of non-inoculated seedlings. However, inoculated seedlings maintained higher growth even under water stress. Pigments and protein contents decreased under water stress, but higher amount of the same was observed in stressed AB+ seedlings. Enhanced activity of nitrate reductase was recorded in AB+ seedlings with maximum in control. Water stress significantly decreased the nitrate reductase activity. A significant increase in the activity of superoxide dismutase (SOD) in leaves was recorded under water stress except in B+ with maximum increase in non-inoculated seedlings. Catalase (CAT) activity decreased in stressed non-inoculated seedlings while increased in the leaves of A+ and AB+ seedlings. Almost similar trends were recorded for both leaves and cotyledons. PGPR improved the water status in stressed seedlings and thereby physiological and biochemical parameters and thus ameliorated the severe effects of water stress.  相似文献   

17.
Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats.  相似文献   

18.
The aim of this study was to evaluate cadmium stress induced changes in the growth, lipid peroxidation and antioxidant activity of Bassia indica associated with arbuscular mycorrhizal fungi (AMF) and their amelioration by calcium application. Cadmium stress can cause alterations in the physiological and biochemical processes in plants. A calcium application combined with an AMF treatment resulted in the reduction of lipid peroxidation and the production of hydrogen peroxide, thereby mediating the mitigation of cadmium induced oxidative stress. The activity of antioxidant enzymes increased with cadmium application, whereas AMF inoculation combined with a calcium application further enhanced their activity. An increase in the content of non-enzymatic antioxidants such as ascorbate, reduced glutathione (GSH), oxidized glutathione (GSSG) and S-nitrosoglutathione (GSNO) in AMF-inoculated and calcium-treated plants further suggests their role in strengthening the antioxidant defense system that results in maintained growth. The application of calcium combined with the AMF treatment caused a significant reduction in lipid peroxidation and in the production of hydrogen peroxide, thereby mediating the mitigation of the cadmium induced oxidative stress. Increased proline accumulation was clearly evident in stressed plants, and the calcium application as well as the AMF inoculation further induced proline synthesis, thereby providing efficient protection against cadmium stress by increasing the maintenance of the systemic resistance criteria.  相似文献   

19.
Cadmium is among the toxic and hazardous metal widely dispersed in the environment in high levels. Current studies have provided new insights into antioxidant properties of bioflavonoid which have emerged as probable therapeutic and nutraceutical agents. The present study is geared to investigate the possible role of Cymbopogon schoenanthus (L.) Spreng. (or Ethkher) on heavy metal cadmium (Cd) induced oxidative stress in mice. Mice were randomly divided into four groups and treated for 15 days as follows: group 1: normal control-treated (saline); group 2: Ethkher leaves extract-treated (100 mg/kg); group 3: cadmium chloride (CdCl2) treated; group 4: CdCl2 plus Ethkher leaves extract. The results showed a significant reduction in hemoglobin, RBC and hematocrit in cadmium-treated mice as compared to control. Exposure to Cd caused a significant increase in the number of white blood cells (P < 0.05) indicating the occurrence of systemic inflammation. The results of this study also revealed that the mice intoxicated with Cd showed a significant increase in bilirubin, aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transpeptidase (GGTP) activities. Cd intoxication leads to suppression in humoral immunity. However, pretreatment with Ethkher extract reversed almost all the abnormalities in the blood parameters showing noteworthy protection against cadmium induced toxicity in mice. The outcome of the present study revealed that the Ethkher possessed significant immunomodulatory activity and had a preventive effect on the hematological alterations in Cd intoxicated mice.  相似文献   

20.
Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot.Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections.Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part.Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from upper soil layers, which are richer in humus in otherwise nutrient-poor soils, and also has implications for the uptake of surface-soil pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号