首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental gradients and competition influence aquatic macrophyte distribution in estuaries. The competition-to-stress hypothesis states that some species are excluded from lower estuaries (high salinity) due to abiotic stress and others from upper estuaries (low salinity) by competition. The growth of Crinum americanum L. and Spartina alterniflora Loisel. in monoculture (10:0/0:10) and mixed culture (5:5) under different salinity levels (4/12/26) was analysed by a laboratory experiment (3 cultures × 3 sediment types × 3 replicate) to understand the role of competition and salinity on the distribution of these species in a tropical estuary as well as to verify whether the competition-to-stress hypothesis explains their zonation. We tested the hypothesis that S. alterniflora is not established in the upper estuary due to the effect of competition with C. americanum, whereas the latter presents restrictions to high salinity and has greater competitive ability in the upper estuary. Our data confirm the competition-to-stress hypothesis but not as proposed originally. We conclude that abiotic stress (low nutrient availability) is responsible for the absence of S. alterniflora in the upper estuary and that the competition between the two species is responsible for the absence of C. americanum in the lower estuary.  相似文献   

2.
The brackish water copepod Eurytemora affinis is the most abundant copepod species in the low salinity zone (2-15) of the Seine estuary. Despite its ecological importance, little is known about its population dynamics in the Seine. We studied the effects of temperature (10 °C and 15 °C) and salinity (5, 15 and 25) on reproduction under non-limiting food conditions. We used experiments to determine multiple reproductive parameters for E. affinis. In all experiments, we fed E. affinis a mixture of Rhodomonas marina and Isochrysis galbana. Couples of pre-adult females (C5) and adult males were mated until the female extruded a clutch of eggs and then individual females were observed every 6-12 hours until death to determine (a) embryonic development time, (b) inter clutch time and (c) clutch size throughout their adult lifespan. All reproductive parameters were negatively affected by low temperature (10 °C) and by high salinity (25). At 10 °C and a salinity of 25, mortality during the post-embryonic period was extremely high (85%). Differences in all reproductive parameters between salinities 5 and 15 were minimal. From 15 °C to 10 °C mean latency time (time between hatching of eggs and extrusion of new ones) increased from 0.8 to 2.25 days, the mean embryonic development time from 2.2 to 3.2 days and the mean clutch size decreased from 38 to 22 eggs female- 1. The mean clutch size decreased when females reached a critical age. The hatching success was high (near 95%) under all conditions except at high salinity. Egg production rates showed no significant differences between salinities 5 and 15 and were significantly higher at 15 °C (13 eggs female- 1 day- 1 at salinity 5 and 15) than at 10 °C (4 eggs female- 1 day- 1). These values at 15 °C were higher compared to those from other populations of E. affinis in estuaries or lakes. The high reproductive potential of E. affinis from the Seine estuary at 15 °C and low salinities explain its high densities in the low salinity zone during spring and early summer.  相似文献   

3.
Climatic fluctuations usually change the intensity of existing interactions. Thus, in the context of the global climate change, it is important to consider new potential interactions or changes that may appear. Heavy rainy periods (one of the consequences of global climate change in eastern-central Argentina) can promote flooding in some estuaries (mainly on coastal lagoons), and thus, affect interactions between species. In this work we investigate if climatic fluctuations can affect Spartina densiflora Brong. (dominant marsh plant) survival through a chain of biotic and abiotic interactions in a SW Atlantic costal lagoon (37° 40′S, 57° 23′W; Mar Chiquita, Argentina). To achieve this, the long-term rainfall behavior of this region, and the effect of rainy periods on submergence of estuarine marsh areas (using satellite images) were analyzed. Then, the effect of flooding on the activity of the dominant herbivore of this system, the burrowing crab Neohelice granulata (= Chasmagnathus granulatus), was studied using pitfall traps. Finally, the effect of flooding on crab herbivory rates and plant survival were analyzed using transplants, stem-marking and flooding experiments. Long-term rainfall behavior showed that mean annual rainfall has increased during the last century, with the occurrence of more rainy years, and increases in cumulative monthly rainfall increased the submerged area of the S. densiflora marsh. Also, crab activity in the marsh largely increased during periods of flooding, associated with more than 100% increments in herbivory rates and stem mortality. These results reveal that increments in rainfall regime can trigger a cascade of abiotic and biotic interactions leading to increased marsh mortality, and stresses the importance of considering both, biotic and abiotic factors, together to predict changes in community organization.  相似文献   

4.
The occurrence of early larval stages of Brama brama and Coryphaena hippurus is reported for the first time in Adriatic waters. Two larvae of B.brama between 4.36 and 5.00 mm, and two larvae of C.hippurus between 4.75 and 4.95 mm standard length, were found in ichthyoplankton collections taken off the River Neretva estuary (43010N, 17°250E) and station Stoncica, island Vis (43°000N, 16°20E) (eastern middle Adriatic), respectively. The capture of both species (B.brama) in August 1998; C.hippurus in May 1998) is in agreement with their proposed seasonal life cycle in the Adriatic Sea.   相似文献   

5.
Hemisphere scale events such as El Niño-Southern Oscillation (ENSO) can alter rainfall regimes worldwide, with important effects on species abundance and distribution. The evidence of ENSO effects on terrestrial communities is, however, restricted to a few ecosystem types. We explored the effects of ENSO episodes on plant/terrestrial-herbivore interactions through changes in the rainfall regime in a southwestern Atlantic salt marsh (Mar Chiquita coastal lagoon, Argentina. 37° 40′S, 57° 23′W). Surveys showed a positive relationship between winter rainfall and the abundance of the wild guinea pig Cavia aperea. The highest salt marsh abundances of C. aperea were associated with rainy periods during El Niño episodes, and the lowest ones were associated with the driest La Niña episodes. Rainfall was negatively associated with marsh sediment salinity, and experiments revealed that increased salinity reduces growth and increases mortality of cordgrass (Spartina densiflora). Salt increase also causes the highest percentage of dry area in S. densiflora leaves and reduced carbon content, and more salt content and secretion in S. densiflora stems. A factorial experiment in which we manipulated C. aperea presence and salinity along the edges of S. densiflora patches showed that plants can asexually invade unvegetated areas when salinity is reduced and C. aperea is excluded. Conversely, S. densiflora edges retracted when salinity was increased or there was C. aperea herbivory. Changes in nutritional quality of S. densiflora could explain the low herbivory of (and lack of impacts from) C. aperea in plots with high salinity. Thus, plant distribution responds directly to climate oscillations through changes in salt stress, and indirectly, through changes in plant-herbivore interactions. Herbivores respond indirectly to climate oscillations through changes in plant food quality, which suggests that top-down effects increase when bottom-up stressors are relaxed. ENSO events have direct and indirect effects on marsh communities that modulate the relative importance of top-down and bottom-up effects and have a considerable effect on the primary productivity of S. densiflora marshes.  相似文献   

6.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

7.
The sea lavender Limonium girardianum (Guss.) Fourr. is endemic to the Mediterranean salt marshes of the French and Spanish coasts. Most of the salt marshes where L. girardianum occurs are exposed to human disturbance, in particular due to industrial expansion. To determine the ecological conditions favorable to the development of L. girardianum, we used a set of permanent plots distributed along a topographical gradient in eleven French salt marshes. We monitored intensity of flooding, water table depth, soil moisture, soil salinity and granulometry. We investigated (i) the abiotic and biotic requirements for L. girardianum and (ii) the effects of environmental conditions on the population structure of L. girardianum. We found a unimodal response of L. girardianum species to flooding, salt and soil moisture gradients. Soil texture modulated the effects of flooding and drought on the presence of the species. Furthermore, flooding induced population renewal, i.e. the highest seedling emergence and adult mortality. We recorded low seedling emergence in higher topographical positions. Proportions of seedlings were lowest on saltier soils and highest in flooded areas and on coarse sand. Prolonged flooding is likely to induce population renewal as long as remaining individuals are capable of reconstituting viable populations. To suggest efficient intermediate and long-term conservation strategies for L. girardianum, it will be necessary to consider the role of human-driven changes in salt marshes with regard to hydrology and control of the vegetation.  相似文献   

8.
This paper reports the parasites found in three commercially exploited bivalve molluscs (Mytella guyanensis, Anomalocardia brasiliana and Iphigenia brasiliana) of an estuarine region of Ilhéus, south of Bahia, Brazil (14°48′23′′S; 39°02′47′′W). Samples of 20 individuals of each species were collected fortnightly from August 2005 to August 2006. A total of 1480 individuals was collected and processed by standard histologic techniques; the histologic sections were stained with Harris haematoxylin and eosin and examined with light microscope. The water temperature in the study area varied from 24 to 30.5 °C and the salinity from 0 to 23 ppt. Remarkable differences were found in the parasitic community between the three mollusc species involved in the study, which occupied different habitats in the estuarine region of the Cachoeira river. The following parasites were found: intracellular rickettsia-like colonies in digestive epithelia; intracellular gregarine Nematopsis sp. in gills, mantle, gonad, digestive gland and foot muscle; sporocysts of a Bucephalidae trematode in gonads, mantle, gills, digestive gland and foot; unidentified digenetic metacercariae in digestive gland and gonad; metacestodes of Tylocephalum sp. in connective tissue in the digestive gland and in gonad; and an unidentified metazoan in mantle and intestinal lumen. No significant temporal variation in the prevalence of any parasite was detected, which could be due to the narrow temperature range of the region and the absence of patterns of salinity and rainfall variation through the year. The infestation by sporocyst was the only pathological threat detected for the studied populations because of its potential for host castration. The low infection intensity and/or prevalence of the other parasites and the lack of obvious lesions suggest that there is no other serious pathological risk for the studied mollusc populations.  相似文献   

9.
Two non-indigenous botryllid ascidian species - Botryllus schlosseri (golden star tunicate) and Botrylloides violaceus (violet tunicate) - have become established in British Columbia (BC), Canada. One species, B. schlosseri, is native to Europe while the other, B. violaceus, is native to Asia. Environmental tolerances of both species are poorly understood. We examined the effects of temperature and salinity on growth, survival, and reproduction of these species in the laboratory in order to characterize their environmental tolerances and preferences. Laboratory-raised juvenile colonies were studied using a two-factorial experimental design with five levels of temperature (5, 10, 15, 20, 25 °C) and five levels of salinity (14, 20, 26, 32, 38‰). Both B. schlosseri and B. violaceus possessed broad temperature and salinity tolerances, but B. schlosseri was slightly more euryhalinal than B. violaceus. Generally, B. schlosseri survived environmental conditions of 10-25 °C and 14-38‰, exhibited positive growth at 10-25 °C and 20-38‰, and attained its largest colony sizes at 15-20 °C and 20-38‰. Botrylloides violaceus tolerated environmental conditions between 5-25 °C and 20-38‰, demonstrated positive growth at 15-25 °C and 26-38‰, and attained its largest colony sizes at 20-25 °C and 26-38‰. Results from the laboratory experiment were then used in a modeling exercise to determine the coastal areas of BC that these organisms might be likely to exist in or invade, based on near-surface temperatures and salinities. The model predicted that no areas were totally unsuitable for survival and growth of either species (based solely on temperature and salinity tolerances), with the most suitable locations being along the west coast of Vancouver Island, a region with significant shellfish aquaculture activity.  相似文献   

10.
Here we address the question of whether the presence of the burrowing crabs Chasmagnathus granulatus affects small- and large-scale habitat use by migrant shorebirds. This crab is the dominant species in soft bare sediments and vegetated intertidal areas along the SW Atlantic estuaries (southern Brazil 28°S to the northern Argentinean Patagonia 42°S). They generate very extensive burrow beds in soft bottom intertidal areas. Our information shows that this burrowing crab affects the small-scale habitat use by shorebirds, given that shorebirds never walk through the funnel-shaped entrances of burrows. Given that crab burrow entrances occupy up to 40% of the intertidal area, there is a large decrease of available shorebird habitat in crab beds, restricting their activity to the spaces between the burrows. The southern migratory shorebird Charadrius falklandicus maximize the use of these areas by foraging closer to the burrows than the other bird species. Neotropical migrants, such as Calidris fuscicollis, Pluvialis squatarola and Tringa melanoleuca, used foraging paths that tended to maximize the distance from burrows, especially the distance to larger burrows. A field experiment showed that this was not necessarily due to a decrease in the availability of polychaetes near the crab burrows. A combination of landscape measurements and satellite images showed that crab beds covered up to 40% of the intertidal area of the Mar Chiquita coastal lagoon (37°40′S, Argentina), and nearly 100% of the intertidal area of the Bahia Blanca estuary (38°48′-39°25′S, Argentina). These two estuaries are located along the migratory flyway of Neotropical migratory shorebirds, but the Bahia Blanca estuary (area∼110,000 ha) shows a much lower shorebird diversity than Mar Chiquita (area∼4500 ha). The most common species in Bahia Blanca is the two-banded plover C. falklandicus, the species least affected by crabs at Mar Chiquita and which prefers to use high-density crab areas as foraging sites. The oystercatcher Haematopus palliatus was also most abundant in high-density crab areas, but they used these areas for resting. The abundances of preys varied during the study period and between the crab density areas, indicating that the use of these areas by birds is independent of crab density. However, burrowing crabs affect the depth distribution of polychaete and thus their availability to shorebirds. We suggest that this shorebirds-burrowing organism interaction could be generalized for other intertidal estuarine habitats.  相似文献   

11.
There has been an increasing interest in using the brackish water mysid Neomysis integer as a toxicological test species for Western European estuarine systems. In this respect, more data on growth, moulting and development in this species is needed. The influence of prevailing environmental variables (e.g. temperature, salinity) and age on these processes as well as their optimal range have to be known in order to develop optimal laboratory cultures and to differentiate between chemically induced variability and natural variability in toxicity testing. Individual post-marsupial growth (size, intermoult period, growth factor) was studied from first day neonates until adulthood at eight environmentally relevant temperature-salinity conditions. Three salinities (5, 15 and 30 psu) were tested at 15 and 20 °C, and two more extreme temperatures (8 and 25 °C) were tested at a salinity of 5 psu.Survival and growth of N. integer were detected within the whole range tested, but sexual maturation was only possible in the narrower range of 15-25 °C and 5-15 psu. The size at maturity of N. integer increased with decreasing temperature and increasing salinity. Salinity seems to have a stronger effect than temperature on the duration of maturation. The sigmoid von Bertalanffy growth model was fitted to the individual and pooled data, except for the 8 °C experiment where growth was linear. Estimates from pooled data were comparable with individually based estimates, but generally underestimated the asymptotic length. Temperature was negatively correlated with the asymptotic length and positively correlated with the growth constant K. Higher temperatures caused smaller intermoult periods but had no effect on the growth increment, while salinity effects were less straightforward and dependent on the water temperature. A tool is provided to estimate the age, moult number, intermoult period, growth factor and growth rate from the body standard length of N. integer. Experimentally derived von Bertalanffy parameter estimates resulted in a higher growth performance index compared with field-based estimates for the Schelde estuary and Galgenweel populations of N. integer.  相似文献   

12.
The combined effect of salinity and temperature on Spirorbis spirorbis L. and Circeus spirillum L. larvae from the White Sea was studied in the laboratory experiments. In the White Sea, S. spirorbis is distributed through the depth of 1-20 m and is affected by all varieties of fluctuations in salinity and temperature. C. spirillum lives in more wide range of depths 1-55 m and is more stenohaline. S. spirorbis larvae are sufficiently more resistant to the low salinity (10‰) than C. spirillum larvae. Both species are stenothermic. Highest survivorship of S. spirorbis larvae was marked under 5 °C in all experimental salinities. Under temperature treatments of 10-15 °C, the larval survivorship was sufficiently restricted in all salinities. Highest survivorship of C. spirillum larvae was also marked under 5 °C but in more narrow salinity range.The number of larvae undergoing metamorphosis in both species was very low, only about 10% of the total number. Highest number of successful attachments in both species was marked in high salinities (25-30‰) and does not exceed 25% of survivors. Experimental data suggests that salinity and temperature affect directly general survivorship of the larvae and secondary-attachment and metamorphosis processes.  相似文献   

13.
Life-history traits may have an important role in promoting species coexistence. However, the complexity of certain life cycles makes it difficult to draw conclusions about the conditions for coexistence or exclusion based on the study of short-term competitive dynamics. Brachionus plicatilis and B. manjavacasare two cryptic rotifer species co-occurring in many lakes on the Iberian Peninsula. They have a complex life cycle in which cyclical parthenogenesis occurs with diapausing stages being the result of sexual reproduction. B. plicatilis and B. manjavacasare identical in morphology and size, their biotic niches are broadly overlapping, and they have similar competitive abilities. However, the species differ in life-history traits involving sexual reproduction and diapause, and respond differently to salinity and temperature. As in the case of certain other species that are extremely similar in morphology, a fluctuating environment are considered to be important for their coexistence. We studied the long-term competitive dynamics of B. plicatilis and B. manjavacas under different salinity regimes (constant and fluctuating). Moreover, we focused on the dynamics of the diapausing egg bank to explore how the outcome of the entire life cycle of these rotifers can work to mediate stable coexistence. We demonstrated that these species do not coexist under constant-salinity environment, as the outcome of competition is affected by the level of salinity—at low salinity, B. plicatilis excluded B. manjavacas, and the opposite outcome occurred at high salinity. Competitive dynamics under fluctuating salinity showed that the dominance of one species over the other also tended to fluctuate. The duration of co-occurrence of these species was favoured by salinity fluctuation and perhaps by the existence of a diapausing egg bank. Stable coexistence was not found in our system, which suggests that other factors or other salinity fluctuation patterns might act as stabilizing processes in the wild.  相似文献   

14.
He Q  Cui B  An Y 《PloS one》2012,7(3):e33164

Background

Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive.

Methodology and Principal Findings

We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China.

Conclusions and Significance

We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments.  相似文献   

15.
The extent to which the small tents of the early instars of Malacosoma americanum warmed when irradiated by sunlight was investigated by continuous electronic monitoring of field colonies for 137 colony-days. Tent temperatures exceeded the threshold for larval growth of 15 °C on 88–96% of the study days, exceeding in degree-minutes the ambient excess-over-threshold by a factor of approximately five. In still air, tents constructed by third instar caterpillars achieved greater temperature excesses over ambient than did a model of a tightly sealed glass house, but smaller tents and tents exposed to simulated wind did not perform as well. Tents of M. americanum warmed more rapidly and to a high temperature than silk nests of markedly different design constructed by other species.  相似文献   

16.
Halogeton glomeratus (M. Bieb.) C.A. Mey., Lepidium latifolium Linn. and Peganum harmala Linn. are distributed in temperate salt playa habitats of Upper Hunza, Pakistan. Seeds were germinated under various salinity (0–500 mM NaCl), light (12 h-light:12 h-dark and 24 h-dark) and temperature (5/15, 10/20, 15/25, 20/30, and 25/35 °C, dark/light) regimes for 20 days to determine the optimal conditions for germination and recovery of seeds from these factors when exposed to less than optimal conditions. Seeds that failed to germinate in dark were transferred successively to 12 h-photoperiod, salinity to distilled water and from various temperature regimes to 20/30 °C, to determine the effect of these stresses and the ability of these seeds to recover respectively. Highest seed germination (H. glomeratus and L. latifolium: 100%; P. harmala: 80%) was obtained in non-saline control at 20/30 °C in 12 h-photoperiod, however, increase in salinity progressively inhibited seed germination. Seed germination of H. glomeratus and P. harmala was substantially inhibited and that of L. latifolium was prevented in dark. Salinity and dark treatments have a synergistic effect in inhibiting seed germination of all species. No seed of any species germinated at 5/15 °C; germination was substantially inhibited at 25/35 °C both for H. glomeratus and P. harmala while L. latifolium failed to germinate at 25/35 °C. Rate of germination also decreased with an increase in salinity at all temperature regimes but this effect was minimal at optimal temperature regime of 20/30 °C. After successive elimination of light, salinity and temperature stresses, final seed germination was identical to respective controls. The results indicate that seeds of these temperate halophytes could endure environmental stresses without losing viability and germinate readily when these stresses are removed. Under the extremely variable conditions of the playa habitat these species are highly opportunistic exploiting the windows of opportunity available during spring or early summer.  相似文献   

17.
Biotic resistance is the ability of native communities to repel the establishment of invasive species. Predation by native species may confer biotic resistance to communities, but the environmental context under which this form of biotic resistance occurs is not well understood. We evaluated several factors that influence the distribution of invasive Asian mussels (Musculista senhousia) in Mission Bay, a southern California estuary containing an extensive eelgrass (Zostera marina) habitat. Asian mussels exhibit a distinct spatial pattern of invasion, with extremely high densities towards the back of Mission Bay (up to 4,000 m−2) in contrast with near-complete absence at sites towards the front of the bay. We established that recruits arrived at sites where adult mussels were absent and found that dense eelgrass does not appear to preclude Asian mussel growth and survival. Mussel survival and growth were high in predator-exclusion plots throughout the bay, but mussel survival was low in the front of the bay when plots were open to predators. Additional experiments revealed that consumption by spiny lobsters (Panulirus interruptus) and a gastropod (Pteropurpura festiva) likely are the primary factors responsible for resistance to Asian mussel invasion. However, biotic resistance was dependent on location within the estuary (for both species) and also on the availability of a hard substratum (for P. festiva). Our findings indicate that biotic resistance in the form of predation may be conferred by higher order predators, but that the strength of resistance may strongly vary across estuarine gradients and depend on the nature of the locally available habitat.  相似文献   

18.
This study was performed to clarify how weather and current dynamics affect the resistance to temperature change in the oceanic sea skaters, Halobates. Heat coma temperature (HCT) was measured for the adults and 5th instar larvae of four Halobates species collected from a fixed sampling location (12°00′N, 135°00′E ) in western tropical Pacific Ocean and from 13 locations in the eastern area of the India Ocean ranging from 08°00′N-06°00′S and 86°00-76°00′E. Both the gap temperature for heat coma (GTHC, mean±SD: 7.83±1.86 °C, n=32) and the heat coma temperature (HCP, 35.03±1.80 °C, n=32) of individuals collected from the Pacific Ocean, during the first half (10 days) of the sampling period at the fixed sampling point, were significantly higher than those during the second half (GTHC: 5.10±2.05 °C, n=63; HCP: 34.03±2.02 °C, n=63). The reduction in heat tolerance shown in the second half of the 20 day period may have been caused by a decrease in air temperature due to rainfall that occurred around the sampling point accompanied with the arrival of Typhoon No. 6.In the study of individuals collected from the Indian Ocean, significantly higher average GTHCs of >8 °C were recorded for the adult H. micans collected at 02°00′S and 06°00′S (89°00′E) than those at 0°00-8°00′N in the eastern Indian Ocean. Dynamic mixture of water from northern and southern currents occurs at 02°00-6°00′S of the Indian Ocean and might relate to such high heat tolerance.Temperature dynamics in the ocean habitat might directly affect the temperature resistance of the oceanic sea skaters.  相似文献   

19.
Mysids are an important component of estuarine hyperbenthos and a major prey item in the food web of many estuaries. Understanding the abiotic and biotic mechanisms determining mysid distributions is therefore important to comprehend the general processes structuring estuarine communities. We carried out field surveys and exposure-survival experiments for three species of mysids, Neomysis integer Leach Mesopodopsis slabberi van Beneden and Rhopalophthalmus tartessicus Vilas-Fernandez, Drake and Sorbe, to link salinity tolerances of different sex and life stages (adults and juveniles) to their spatial distributions within the Guadalquivir estuary, SW Spain. Despite being euryhaline, the three species of mysids were unevenly distributed along the saline gradient, with salinity being the environmental variable which best explained structure changes in the estuarine mysid assemblage. R. tartessicus remained confined to the outer and more marine part of the estuary and showed a higher temporal variation in its salinity-related distribution (position within the salinity gradient). M. slabberi and N. integer displayed wider estuarine distributions but remained associated with intermediate and low salinities, respectively. We found considerable inter- and intra-specific differences in tolerance to sudden salinity changes: N. integer, and juveniles of M. slabberi and R. tartessicus, showed a high tolerance to sudden salinity changes, whereas adults of M. slabberi and R. tartessicus were only tolerant to salinities close to their isosmotic points. For the less euryhaline species M. slabberi and R. tartessicus acclimation to unfavourable salinities decreased survival after exposure to sudden salinity changes. Both location and strength of the salinity gradient were important factors in determining spatial distribution, either directly to avoid osmotic stress and mortality risk (R. tartessicus and M. slabberi) or indirectly to reduce inter-specific mysid competition (N. integer). We suggest inter- and intra-specific euryhalinity differences determine the spatial distribution of mysids and the specific strategies they use to maintain this spatial structure in a highly variable environment.  相似文献   

20.
Mesopodopsis africana is a key species in the St. Lucia Estuary, Africa's largest estuarine lake. This system is currently undergoing an unprecedented crisis due to freshwater deprivation. A reversed salinity gradient has persisted with hypersaline conditions (> 300) occurring in the upper regions of the estuarine lake. In the context of climate change, rising temperatures will not only push the thermal tolerance limits of estuarine organisms, but increased evaporation from this lake's large surface area will lead to further salinity increases. The present study aims to determine the temperature and salinity tolerance of M. africana, both through in situ studies and the use of laboratory experiments. Results indicate that M. africana is a broad euryhaline species. Mysids were recorded at salinity levels ranging from 2.55 to 64.5 in situ. While experiments revealed a narrower salinity tolerance, acclimation resulted in a significant increase in the tolerance range of this species. It is probable, however, that slower acclimation times may increase survival rates even further, particularly in the higher salinity treatments. M. africana was especially tolerant of the lower salinity levels. In the 20 °C acclimation experiment, LS50 at 1 and 2.5 was only reached after 8 and > 168 h, respectively. Survival at 10 and 40 °C was negligible at all salinity levels. This concurs with field results which documented mysids at temperatures ranging from 16.2 to 30.9 °C. Salinity and temperature increases associated with global climate change may, therefore, have significant implications for these mysid populations, with cascading effects on the higher trophic levels which they support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号