首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Background and AimsThe impact of global warming on life cycle timing is uncertain. We investigated changes in life cycle timing in a global warming scenario. We compared Arabidopsis thaliana ecotypes adapted to the warm/dry Cape Verdi Islands (Cvi), Macaronesia, and the cool/wet climate of the Burren (Bur), Ireland, Northern Europe. These are obligate winter and summer annuals, respectively.MethodsUsing a global warming scenario predicting a 4 °C temperature rise from 2011 to approx. 2080, we produced F1 seeds at each end of a thermogradient tunnel. Each F1 cohort (cool and warm) then produced F2 seeds at both ends of the thermal gradient in winter and summer annual life cycles. F2 seeds from the winter life cycle were buried at three positions along the gradient to determine the impact of temperature on seedling emergence in a simulated winter life cycle.Key ResultsIn a winter life cycle, increasing temperatures advanced flowering time by 10.1 d °C–1 in the winter annual and 4.9 d °C–1 in the summer annual. Plant size and seed yield responded positively to global warming in both ecotypes. In a winter life cycle, the impact of increasing temperature on seedling emergence timing was positive in the winter annual, but negative in the summer annual. Global warming reduced summer annual plant size and seed yield in a summer life cycle.ConclusionsSeedling emergence timing observed in the north European summer annual ecotype may exacerbate the negative impact of predicted increased spring and summer temperatures on their establishment and reproductive performance. In contrast, seedling establishment of the Macaronesian winter annual may benefit from higher soil temperatures that will delay emergence until autumn, but which also facilitates earlier spring flowering and consequent avoidance of high summer temperatures. Such plasticity gives winter annual arabidopsis ecotypes a distinct advantage over summer annuals in expected global warming scenarios. This highlights the importance of variation in the timing of seedling establishment in understanding plant species responses to anthropogenic climate change.  相似文献   

2.
四种短命植物若干生物学生态学特性的研究   总被引:24,自引:2,他引:24       下载免费PDF全文
 卷果涩芥(Malcolmia scorpioides)、四齿芥(Tetracme quadricornis)、长齿四齿芥(T.recurvata)和狭果鹤虱(Lappula semiglabra)为新疆北部常见的四种短命植物。本文从种子生物学、发育节律、株形和植株寿命等方面研究它们与生存环境的协调与适应。  相似文献   

3.
Recent studies suggest that evergreen plants may maintain their photosynthetic capacity through the winter. Since mild winters are predicted to be more frequent in the future, the metabolic activity of plants is also likely to increase. The aim of the present study was to assess how various environmental factors, such as temperature, photoperiod and preceding frost, affect the recovery of photosynthesis during a mild spell in winter. The recovery of photosynthesis was studied in a series of growth chamber experiments where the overwintering of lingonberry (Vaccinium vitis-idaea) was interrupted by an intermittent warm spell of 1 week during different phases of winter. Rapid activation was observed in all the experiments during the first 3–4 days. No obvious effects of the phase of winter or photoperiod on the recovery of photosynthesis were observed, but a severe freezing treatment prior to the warm spell retarded the recovery significantly. Once recovered, however, lingonberry was able to maintain high rates of photosynthesis even at near-freezing temperatures, which prevail in their natural sub-nivean environment. The apparent quantum yield of photosynthesis remained high through the winter for lingonberry. This may prove advantageous for evergreen dwarf shrubs which overwinter in dim environments under snow.  相似文献   

4.
Laila M. Karlsson  Per Milberg   《Flora》2008,203(5):409-420
In an ecological context, knowledge of intra-species variation in dormancy and germination is necessary both for practical and theoretical reasons. We used four or five seed batches (replicates) of four closely related annuals co-occurring in arable fields in Sweden: Lamium amplexicaule, L. confertum, L. hybridum and L. purpureum. Seeds used for experiments stemmed from plants cultivated on two sites, each site harbouring one population of each species, thereby ensuring similar environmental history of seeds. Seeds were tested for germination when fresh and after three different pre-treatments (cold or warm stratification, or dry storage) for up to 24 weeks. Seeds were also sown outdoors. Despite substantial intra-species variation, there were clear differences between species. The general seed dormancy pattern, i.e. which environmental circumstances that affect dormancy, was similar for all species; dormancy reduction occurred during warm stratification or dry storage. Even though the response to warm stratification indicates a winter annual pattern, successful plants in Sweden were mostly spring emerged. Germination in autumn occurred, but plants survived winters poorly. Consequently, as cold stratification did not reduce dormancy, strong dormancy in combination with dormancy reduction during dry periods might explain spring germination. It is hypothesised that local adaptations occur through changes mainly in dormancy strength, i.e. how much effort is needed to reduce dormancy. Strong dormancy restricts the part of each seed batch that germinate during autumn, and thus reduces the risk of winter mortality, in Sweden.  相似文献   

5.
Germination phenology data have been collected from 75 winter annuals, 49 summer annuals, 28 monocarpic perennials, and 122 polycarpic perennials, and experimental investigations of dormancy breaking and germination requirements have been conducted on 56 winter annuals, 32 summer annuals, 18 monocarpic perennials, and 73 polycarpic perennials. The purpose of these studies was to determine if there are correlations between the dormancy breaking and germination requirements of seeds and the germination phenology, life cycle type, habitat requirements, range of geographical distribution, and phylogenetic relationships of the species. Germination phenology is highly correlated with the responses of seeds to the yearly temperature cycle. Species with winter and summer annual life cycles have predictable germination characteristics, but monocarpic and polycarpic perennials do not. Several dormancy types may be found in a given habitat, and narrowly endemic and widely-distributed species in the same genus may have similar germination characteristics. Within some families there is a tendency for a particular type of seed-temperature response to be very important, but frequently this is related to the predominance of a given life cycle type in the family.  相似文献   

6.
Milberg  Per  Andersson  Lars 《Plant Ecology》1998,134(2):225-234
Populations of seeds can vary greatly in their dormancy-breaking and germination characteristics. The purpose of this study was to determine if such dormancy differences are levelled out by cold stratification. Seeds of 33 annual weed species, each represented by three populations, were tested in light and darkness 7 weeks after harvest and after two stratification treatments: 18 weeks at 3 °C in the laboratory and 19 weeks outdoors in soil during winter. Cold stratification removed population differences in some species, but in several species such differences became apparent only after stratification. This happened either because dormancy became stronger in weakly dormant seeds (winter annuals) or weaker in strongly dormant seeds (summer annuals). In several species, the light requirement for germination increased after stratification. These results clearly indicate that germination tests performed on fresh seeds from a single population may not adequately predict germination percentages in the field.  相似文献   

7.
Abstract Freshly-matured achenes of Krigia oppositifolia Raf. were buried in soil at near-natural temperatures for 0–35 months and then exhumed and tested in light and darkness at (12/12 hr) daily thermoperiods of 15/6, 20/10, 25/15, 30/15 and 35/20°C. Achenes required light for germination and exhibited an annual dormancy/nondormancy cycle, being dormant in spring and nondormant in autumn. High summer temperatures (30/15, 35/20°C) fully promoted afterripening, whereas low temperatures (5, 15/6°C) prevented it. As buried seeds came out of dormancy in summer, they first germinated at medium temperatures (20/10, 25/15°C), but with additional afterripening the maximum and minimum temperatures for germination increased and decreased, respectively. Thus, during afterripening, achenes exhibit type 3 temperature responses, which otherwise are known only in two perennial Asteraceae and one perennial Liliaceae. The physiological responses of achenes of K. oppositifolia are unlike those of most winter annuals, which have type 1 responses—i.e., the maximum temperature for germination increases during afterripening. Also, they are unlike the majority of Asteraceae, which have type 2 responses—i.e., the minimum temperature for germination decreases during afterripening. Type 1 responses, typical of most winter annuals, have yet to be reported in the Asteraceae.  相似文献   

8.
The purpose of our research was to determine why seeds of Schoenoplectus hallii germinate only in some wet years. Seeds mature in autumn, at which time they are dormant. Seeds come out of dormancy during winter, if buried in nonflooded, moist soil, but they remain dormant if buried in flooded soil. Nondormant seeds require flooding, light, and exposure to ethylene to germinate. One piece of apple in water (1/12 of an apple in 125 mL of water in a glass jar for a depth of 5 cm) or a 1-μmol/L solution of ethephon elicited very similar (high) germination percentages and vigor of seedlings. Apple, which was shown to produce ethylene in the air space of the jar, was used in a series of experiments to better understand germination. Seeds germinated to 72% if apple was removed from the water after 1 d of incubation, and they germinated to 97% if seeds were washed and placed in fresh water after 3 d of exposure to apple. No seeds germinated in control with no apple. Seeds incubated in apple leachate for 5 d and then transferred to filter paper moistened with distilled water germinated to 90%. Minimum depth of flooding in apple leachate (no soil in jars) for optimum germination was ≥3 cm. Buried seeds of S. hallii exhibited an annual conditional dormancy/nondormancy cycle. Regardless of the month in which seeds were exhumed, they germinated to 59-100% in light in water with apple at daily alternating temperature regimes of 25°/15°, 30°/15°, and 35°/20°C, but germination at 20°/10°C (and to some extent at 15°/6°C) tended to peak in autumn to spring. Thus, seeds can germinate throughout the summer if flooded (ethylene production) and exposed to light. An ethylene cue for germination serves as a "flood-detecting" mechanism and may serve as an indirect signal that water is available for completion of the life cycle and competing species are absent.  相似文献   

9.
Factors controlling the timing of seed germination were investigated in the small succulent winter annual Sedum pulchellum Michx. (Crassulaceae) in its natural habitat on unshaded limestone outcrops in northcentral Kentucky. At maturity in early July the dormant seeds are not dispersed but are retained in the fruits on the standing dead plants until September and October. Many, but not all, of the seeds afterripen in the fruits during summer, and at the time of dispersal some of them are dormant and some are nondormant. Germination and annual population establishment occur in September and October from seed reserves that have been in the soil for one or more years and from seeds produced in the current year. Germination of nondormant seeds may be prevented in autumn by lack of the appropriate combination of environmental factors including light, temperature and soil moisture in the seed's microsite. The effect of low winter temperatures on ungerminated seeds in the population is to induce nondormant seeds into secondary dormancy and to prevent afterripening of dormant seeds. Thus, in spring all the seeds in the population's seed reserve are dormant. During spring and summer some of these seeds afterripen, and they germinate in autumn when, and if, germination requirements are fulfilled.  相似文献   

10.
The germination ecophysiology of Arenaria glabra Michx., a characteristic winter annual plant species of granite and sandstone outcrops of southeastern United States, was investigated. Seeds germinate in early autumn, plants overwinter in the rosette stage and then flower, set seeds, and die in late spring; seeds are dispersed soon after maturity. Eighty-five to 90% of freshly-matured seeds were innately dormant, and the other 10–15% germinated only at temperatures lower than those that occur in the habitat at the time of seed dispersal in June. During the summer after-ripening period, seeds stored dry under ambient laboratory conditions exhibited progressive increases in rates and total percentages of germination, a widening of the temperature range for germination, and a loss of the light requirement. At a 14-hr daily photoperiod, seeds kept on continuously moist soil germinated to 83% at simulated July and August temperatures during July and August, and the remainder germinated at September temperatures in September. On the other hand, seeds subjected to alternate wetting and drying during July and August germinated to only 9% during those 2 months, and the remainder germinated after the soil was kept continuously moist, beginning on 1 September, at simulated habitat temperatures during September and October. Thus, the timing of germination of A. glabra in the field is controlled by an interplay of the seeds' physiological state with the dynamics of temperature and soil moisture conditions.  相似文献   

11.
Seeds of the monocarpic perennial Frasera caroliniensis ripen in late summer, and most of them are dispersed in late autumn and winter. However, some viable seeds may remain undispersed for more than a year. Embryos are underdeveloped (ca. 1.1–1.3 mm long) at seed maturity and do not grow while seeds remain on plants in the field. Dormancy in freshlymatured seeds was broken by 12 to 14 weeks of cold stratification at 5 C, during which the embryos elongated. On the other hand, seeds collected in January and March required a period of warm stratification followed by a period of cold stratification to germinate. Seeds collected in September and sown in a nonheated greenhouse germinated to 83% the first spring after maturation, whereas those collected and sown in January and March did not germinate until the second spring. Thus, seeds that remained on plants in the field until winter entered a deepened state of dormancy, and a warm (summer) followed by a cold (winter) stratification period was required to overcome it.  相似文献   

12.
Abstract We studied the germination of seeds of Carrichtera annua L. from a single cohort, stored in the field for up to 18 months, when retrieved at different times and subject to different combinations of temperature and water availability. Germination was affected by season of retrieval, and temperature and water availability in a complex interactive way. Germination rates were lowest when seeds were retrieved during summer or spring, but seeds germinated readily when retrieved during autumn and winter, if exposed to temperatures simulating autumn or winter conditions, and provided water equivalent to at least 50% field capacity. High temperatures and low water availability reduced germination substantially. The results indicate that this species has a combination of cyclic dormancy and germination requirements that minimizes the risk of germination during periods when the risk of prereproductive mortality is high. Given the short life of the seeds of this species, these mechanisms may be essential for the persistence of the species in the highly unpredictable arid lands of southern Australia.  相似文献   

13.
Cardamine hirsuta is a European species that was recently introduced into Japan and its wide distribution has been confirmed in the Kanto district. To understand mechanisms of the recent spread of C. hirsuta in Japan, a comparative study of the alien species and its native congeneric species, C. flexuosa, was conducted. Habitat preferences, phenology and seed germination were examined. Cardamine hirsuta and C. flexuosa showed distinctive habitat-preferences; the former was most common in open habitats created by recent man-made constructions, and the latter was common in rice paddy fields and surrounding areas. The results indicate that C. flexuosa is a year-long annual, with a mixed phenology of summer and winter germination and growth. Seed dormancy during summer was relatively weak for C. flexuosa, and some plants that germinated early in summer reproduced during the same summer–autumn period. Plants that germinated in late summer and autumn behaved as winter annuals. In rice paddy fields, C. flexuosa is a winter annual because germination is prevented by submergence during summer. Plants flower during the following spring and complete their life cycle before the fields are flooded for rice cultivation. Cardamine hirsuta showed strong seed dormancy during summer and behaved as a typical winter annual. Seeds of C. hirsuta were intolerant to submergence in water, a condition that breaks seed dormancy of C. flexuosa. The results explain the absence of C. hirsuta from rice paddy fields. It was concluded that the spread of C. hirsuta is attributable to the recent expansion of urban habitats created by human activity and has occurred without direct competition with C. flexuosa. Considering recent urbanization in many areas, it is suggested that C. hirsuta has been spreading rapidly in Japan.  相似文献   

14.
15.
王欣  高贤明 《植物生态学报》2010,34(12):1404-1413
根据三峡水库水位运行时间, 设计了30、75、115、155、195和240天共6个水淹时间梯度(T-1、T-2、T-3、T-4、T-5和T-6), 采用模拟水淹的方法, 研究了不同水淹时间对三峡消落带4种常见的一年生草本植物稗(Echinochloa crusgali)、金狗尾草(Setaria pumila)、马唐(Digitaria sanguinalis)和荩草(Arthraxon hispidus)种子萌发的影响。结果表明: 1)随着水淹处理时间的增长, 这4种植物的萌发率基本上呈现先增高后降低的趋势。稗和荩草在T-1-T-5的种子萌发率显著高于对照(CK) (p < 0.05), T-6和CK之间差异不显著。金狗尾草T-2、T-3的萌发率显著高于CK (p < 0.05), T-1、T-4-T-6与CK之间无显著性差异。马唐在水淹处理(T-1-T-6)的萌发率均显著高于对照(CK), 但长时间水淹处理(T-4-T-6)对萌发的促进作用要低于短时间水淹处理(T-1-T-3)。这说明一定时间的水淹有利于打破种子休眠并提高种子萌发率。2)一定时间的水淹处理加快了稗、金狗尾草、马唐和荩草的萌发进程。对照组种子的日萌发率较均匀, 萌发曲线较平缓。而水淹处理的种子多集中在3-5天内大量萌发。和对照相比, 一定时间的水淹处理显著提高了这4种植物种子的萌发指数, 缩短了种子的萌发持续时间, 提早了种子萌发高峰时间和达到50%萌发率的时间。长时间的水淹对种子的萌发进程影响不大。3)总体来说, 稗、金狗尾草、马唐和荩草在各个处理下的萌发率均较高(> 40%), 可以考虑作为三峡消落带植被恢复的备选物种。  相似文献   

16.
Osmorhiza longistylis is an herbaceous perennial that grows in woodlands of eastern and central North America. In northcentral Kentucky seeds ripen in early to mid July, and dispersal begins in September and October. Although most of the seeds are shed during late autumn and winter, some remain on the dead shoots for up to 18 months. Seeds are dormant at maturity due to an underdeveloped embryo. Embryos grew at low (5 C) temperatures, but only after seeds were given a period of warm (30/15 C) stratification. With an increase in the length of the warm treatment, there was an increase in the number of embryos that grew to full length during a 12-wk period at 5 C and an increase in the percentage of seeds that germinated. Seeds given 12 wk of warm stratification required more than 8 wk at 5 C to overcome dormancy. Embryos in freshly-matured seeds averaged 0.60 mm long, but those in seeds given 12 wk warm plus 12 wk cold stratification averaged 8.86 mm. Lengths of embryos of seeds kept moist at 30/15 and 5 C for 24 wk averaged 0.63 and 0.89 mm, respectively. Regardless of age and dispersal time, imbibed seeds must be exposed to high (i.e., summer or autumn) and then to low (i.e., winter) temperatures before they will germinate. Consequently, germination occurs only in spring.  相似文献   

17.
Fruits (drupes) of Symphoricarpos orbiculatus ripen in autumn and are dispersed from autumn to spring. Seeds (true seed plus fibrous endocarp) are dormant at maturity, and they have a small, linear embryo that is underdeveloped. In contrast to previous reports, the endocarp and seed coat of S. orbiculatus are permeable to water; thus, seeds do not have physical dormancy. No fresh seeds germinated during 2 wk of incubation over a 15°/6°-35°/20°C range of thermoperiods in light (14-h photoperiod); gibberellic acid and warm or cold stratification alone did not overcome dormancy. One hundred percent of the seeds incubated in a simulated summer → autumn → winter → spring sequence of temperature regimes germinated, whereas none of those subjected to a winter → spring sequence did so. That is, cold stratification is effective in breaking dormancy only after seeds first are exposed to a period of warm temperatures. Likewise, embryos grew at cold temperatures only after seeds were exposed to warm temperatures. Thus, the seeds of S. orbiculatus have nondeep complex morphophysiological dormancy. As a result of dispersal phenology and dormancy-breaking requirements, in nature most seeds that germinate do so the second spring following maturity; a low to moderate percentage of the seeds may germinate the third spring. Seeds can germinate to high percentages under Quercus leaf litter and while buried in soil; they have little or no potential to form a long-lived soil seed bank.  相似文献   

18.
Does climatic warming increase the risk of frost damage in northern trees?   总被引:6,自引:3,他引:3  
Abstract. The effect of climatic warming on the timing of bud burst and the subsequent risk of frost damage on trees in central Finland was assessed with the aid of a computer model, 73 years of temperature data and a climatic scenario corresponding to doubled level of atmospheric CO2. In general, climatic warming hastened bud burst, due to ontogenetic development during warm spells in autumn, winter and spring. During the years with the warmest winters in the scenario conditions: (a) bud burst took place during mid-winter; and (2) depending on the year, the trees were subsequently exposed to temperatures between −27 and −10°C. This finding suggests that the risk of frost damage to trees will be increased if the predicted climatic warming occurs. Because of the assumptions used in the model, the results are not conclusive, but they do point out the importance of further experimental studies on genetic and environmental regulation of timing of bud burst in trees.  相似文献   

19.
Seeds of winter annuals require a summer after-ripening period for dormancy loss and low autumn temperatures for germination. With current and future changes in moisture and temperature, we tested the effects of warming along a relative humidity (RH) gradient on dormancy loss and effects of decreased diurnal temperature range (DTR) on germination. We further reasoned that the effects of changes in these variables would be disproportionate between the exotic and native winter annuals. Seeds of exotic species (Buglossoides arvensis, Lamium purpureum and Ranunculus parviflorus) and co-occurring native species (Galium aparine, Paysonia stonensis and Plantago virginica) were collected in middle Tennessee. After-ripening occurred over a 15–100% RH gradient at 25 and 30°C and germination was tested at 20/10 and 20/15°C. Niche breadth was calculated using Levins' B. Fresh Ranunculus seeds had high germination and those of other species did not. Germination for these species increased with after-ripening, mostly across the RH gradient irrespective of temperature. A decrease in DTR showed mixed results – the extreme being Ranunculus with no germination at 20/15°C. Most exotic species had wider germination niche breadths than native species. With climate change, we suggest that a decrease in DTR may have a larger effect on germination than increasing moisture or warming on dormancy break. Moreover, there is not a clear-cut winner with climate change when we compare exotic versus native species because the responses of our six species were species specific.  相似文献   

20.
Schismus arabicus, a desert annual grass, is one of the most common pasture annuals in the deserts of Israel and Asia. S. arabicus exhibits a unique set of adaptations and survival strategies, which enable it to germinate, develop and produce seeds even in years with annual rainfall of less than 100 mm. The current study examined whether an annual rhythm exists in the survival ability of S. arabicus seedlings exposed to desiccation. Our results indicate that survival of S. arabicus seedlings after six different periods of 7 to 42 days of desiccation depended on the month of germination of the caryopses (seeds). Seed germination was 80–100% in all experiments, regardless the month of germination; however, seedlings that germinated in different months varied in their root and shoot elongation rates. None of about 2,500 seedlings that germinated in July (in each of the 4 years) survived the desiccation treatment. The percentages of surviving seedlings in each month of June from 2002 to 2005 were less than 40%. In contrast, over 80% of the seedlings that germinated in each of the months of December and January survived after the desiccation periods of 7–42 days. Seedlings that survived were transferred to 5 L soil pots in which the seedlings developed into mature plants, completed their life cycle and produced seeds that germinated well. The current study demonstrated a novel phenomenon indicating that seedling survival in plants may depend on an annual periodicity according to the date of germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号