共查询到20条相似文献,搜索用时 0 毫秒
1.
《Redox report : communications in free radical research》2013,18(4):177-183
AbstractObjectivesThe presence of inflammatory cells indicates the development of epithelial cell injury in nasal polyposis (NP) and the potential for production of high levels of reactive oxygen and nitrogen species. The aim of our study was to clarify the role of oxidative stress and antioxidant status in the deterioration accompanying NP.MethodsTwenty patients (11 men) aged 47.2 ± 17.0 years with nasal polyps were included in the study. Twenty healthy subjects (7 men) aged 48.2 ± 15.3 years formed the control group. The erythrocyte activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and plasma nitric oxide (NO) concentrations were measured. An alkaline comet assay was used to determine the extent of blood lymphocyte DNA damage of oxidized purines as glicosylo-formamidoglicosylase (Fpg) sites, and oxidized pyrimidines as endonuclease III (Nth) sites.ResultsA significant increase of NO (P < 0.05) and non-significant decreases of SOD (P > 0.05), CAT (P > 0.05), and GPx (P > 0.05) were seen in NP patients compared to healthy controls. The level of blood lymphocyte oxidative DNA damage in NP patients was significantly higher compared to the control group (P = 0.01).DiscussionThe blood lymphocyte DNA damage level increased in patients with NP. Elevated DNA damage may be related to overproduction of reactive oxygen and nitrogen species and/or decreased antioxidant protection. 相似文献
2.
Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions. 相似文献
3.
Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and results in the generation of reactive oxygen species (ROS). In order to increase our understanding of the effects of UV-B on antioxidant processes, we investigated the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc1 to short-term increased UV-B exposure. After UV-B supplementation, vtc1 mutants exhibited oxidative damage. Evidence for damage included an increase in H(2)O(2) content and the production of thiobarbituric acid reactive substances (TBARS); a decrease in chlorophyll content and chlorophyll fluorescence parameters were also reported. The vtc1 mutants had higher total glutathione than the wild type (WT) during the first day of UV-B treatment. We found reduced ratio of glutathione/total glutathione and increased ratio of dehydroascorbate/total ascorbate in the vtc1 mutants, compared to the WT plants. In addition, the enzymes responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, had insufficient activity in the vtc1 mutants, compared to the WT plants. The same reduced activity in the vtc1 mutants was reported for the enzymes responsible for the regeneration of ascorbate and glutathione (including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase). These results suggest that the ascorbate-deficient mutant vtc1 is more sensitive to supplementary UV-B treatment than WT plants and ascorbate can be considered an important antioxidant for UV-B radiation. 相似文献
4.
5.
The effects of a rapid transfer from a low (3 °C) to a warm (23 °C) temperature on oxidative stress markers and antioxidant defenses were studied in the brain, liver and kidney of the goldfish, Carassius auratus. Cold-acclimated fish were acutely moved to 23 °C and sampled after 1, 6, 12, 24, 48 or 120 h of warm temperature exposure. Lipid peroxide levels increased quickly during the first few hours at 23 °C, but thiobarbituric acid-reactive substances changed little. Protein carbonyl content was reduced by 20–40% in the liver over the entire experimental course, but increased transiently in the kidney. The content of high-molecular mass thiols decreased by two-thirds in the brain and was affected slightly in other organs. By contrast, total low-molecular mass thiols (e.g. glutathione and others) increased transiently. Activities of the primary antioxidant enzymes—superoxide dismutase and catalase—were generally unaffected in goldfish organs, whereas glutathione-dependent enzymes were elevated in the brain and kidney after 24–48 h at 23 °C. Glutathione peroxidase increased by 1.5–2.3-fold and glutathione-S-transferase by 1.7-fold. Hence, a short-term exposure to warm temperature disturbed several oxidative stress markers, but only slightly affected the activities of antioxidant enzymes. However, comparison of the current data for cold-acclimated winter fish with the same parameters in summer fish suggests that longer exposure to high ambient temperature requires the enhancement of activities of glutathione-dependent enzymes for maintaining the steady-state levels lipid peroxidation and protein oxidation in goldfish tissues. 相似文献
6.
Shiori Nonaka Shinpei Kawakami Hiroko Maruki-Uchida Sadao Mori Minoru Morita 《Biochemistry and Biophysics Reports》2019
Piceatannol (PIC), a phytochemical, is abundant in passion fruit (Passiflora edulis) seeds. In this study, we investigated the effects of PIC on the expression levels of antioxidant enzymes in C2C12 skeletal muscle cells and compared its effects with those of PIC analogues and polyphenols. We also evaluated its effects on hydrogen peroxide–induced accumulation of reactive oxygen species in C2C12 myotubes. Treatment with PIC led to dose-dependent upregulation of heme oxygenase-1 (Ho-1) and superoxide dismutase 1 (Sod1) mRNA expression in C2C12 myotubes. PIC was the most potent inducer of Ho-1 among the PIC analogues and major polyphenols tested. In addition, treatment with PIC suppressed the hydrogen peroxide–induced increase in intracellular reactive oxygen species levels. Our results suggest that PIC protects skeletal muscles from oxidative stress by activating antioxidant enzymes such as HO-1 and SOD1 and can therefore help prevent oxidative stress–induced muscle dysfunction such as muscle fatigue and sarcopenia. 相似文献
7.
This paper mainly studies the possible antioxidant of monoterpene and effects of its absence on other antioxidant defense.
The leaves of rubber tree (Hevea brasiliensis) were fed with fosmidomycin through transpiration stream, in the dark, at room temperature for 2 h, and were then exposed
to bright illumination (1,500 μmol m−2 s−1) and moderately high temperature (30°C) for 1 h. The results showed that monoterpene biosynthesis in leaves was considerably
inhibited by fosmidomycin, and the elevated levels of both hydrogen peroxide and malondialdehyde were observed in the leaves
fed with fosmidomycin (LFF). Compared to the control leaves (CK), ∆F/F
m′ in the LFF was markedly lower during the first 20 min; however, there were no significant differences in non-photochemical
quenching and photosynthetic pigments (chlorophylls and carotenoids). In contrast, the activities of antioxidant enzymes (superoxide
dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase) were enhanced in the LFF. Meanwhile,
the contents of antioxidant metabolites (ascorbate and glutathione) were also elevated in the LFF, when compared with the
CK. The results obtained here suggest that monoterpene may be very effective molecule in protecting plants against oxidative
stress, the absence of monoterpene leads to the increased responses of the enzymatic and non-enzymatic antioxidant defenses
to oxidative stress, and the enhancement of the enzymatic and non-enzymatic antioxidant defenses may, in part, compensate
for the loss of antioxidant conferred by monoterpene. 相似文献
8.
A 56-day feeding trial followed by an acute high temperature stress test were performed to evaluate the effect of dietary probiotic Clostridium butyricum (CB) on growth performance and intestine antioxidant capacity of kuruma shrimp Marsupenaeus japonicus. Shrimp were randomly allocated in 9 tanks (30 shrimp per tank) and triplicate tanks were fed with diets containing different levels of C. butyricum (1×109 cfu/g): 0 mg g−1 feed (Control), 100 mg g−1 feed (CB-100), 200 mg g−1 feed (CB-200) as treatment groups. The results indicated that dietary supplementation of C. butyricum increased the growth performance and decreased the feed conversion rate (FCR) of shrimp in the CB-100 group. HE stain showed that C. butyricum increased the intestine epithelium height of M. japonicus. C. butyricum supplemented in diets decreased·O2- generation capacity and malondialdehyde (MDA) content, and increased total antioxidant capacity (T-AOC), catalase (CAT) and peroxidase (POD) activity and the expression level of heat shock protein 70 (hsp70) and metallothionein (mt) gene in intestine of shrimp cultured under normal condition for 56 d, while no significant changes in glutathione peroxidase (GPx) activity and ferritin gene expression level. After shrimp exposed to high temperature stress 48 h, the lower level of·O2- generation capacity and MDA content, and the higher level survival, activities of T-AOC, CAT, GPx and POD, as well as hsp70, ferritin and mt gene expression level were found in intestine of two C. butyricum groups. These results revealed that C. butyricum could improve the growth performance, increase intestine antioxidant capacity of M. japonicus against high temperature stress, and could be a potential feed additive in shrimp aquaculture. 相似文献
9.
M.M. Rubio-Wilhelmi E. Sanchez-RodriguezM.A. Rosales Blasco BegoñaJ.J. Rios L. RomeroE. Blumwald J.M. Ruiz 《Environmental and Experimental Botany》2011,72(2):167-173
Wild type and transgenic tobacco plants expressing isopentenyltransferase, a gene coding the rate-limiting step in cytokinin synthesis, were grown under limited nitrogen (N) conditions. Our results indicated that the WT plants subjected to N deficiency displayed reduced biomass and relative growth rates, increased levels of oxidative damage and reduced foliar concentrations of the different N forms. However, the transgenic plants expressing PSARK∷IPT, in spite of showing a significant decline in all the N forms in the leaf, avoided the alteration of the oxidative metabolism and maintained biomass and the relative growth rates at control levels, under suboptimal N conditions. These results suggest that the increased cytokinin synthesis in the transgenic plants is an effective mechanism to improve N-use efficiency. 相似文献
10.
Chilling of shoot cultures from Oryza sativa L. cv. Taipei 309, to 4 °C leads to conditions of oxidative stress. Tissue H2O2 was observed to increase more than fourfold by 8 d of chilling, and levels of reduced glutathione, which normally rise in growing shoot cultures at 25 °C, were considerably repressed in chilled cultures. Whilst the activity of ascorbate peroxidase in chilled shoots remained similar to the activities in control cultures at 25 °C, the most notable effects of chilling to 4 °C were the very significant loss of catalase and glutathione reductase activity. Although prior exposure of shoot cultures to abscisic acid (ABA) at 25 °C increased levels of catalase activity, such increased levels were not sustained when the pre-treated cultures were placed at 4 °C. Moreover such pre-treatment with ABA did not increase the subsequent ability of shoot cultures to grow at 4 °C.Abbreviations GSH
reduced glutathione
- GSSG
oxidised glutathione
- ABA
cis-abscisic acid
This work is supported by a grant from the Biotechnology and Biological Sciences Research Council. 相似文献
11.
Use of plant growth-promoting bacteria to enhance salinity stress in soybean (Glycine max L.) plants
The effects of three rhizobacterial isolates namely Pseudomonas fluorescens (M1), Pseudomonas putida (M2) and Bacillus subtilis (M3) were examined to enhance growth and chemical components such as chlorophyll and proline of three cultivars of soybean (Glycine max L.) under two levels of salinity stress (S1 = 200 mM and S2 = 400 mM of NaCl salt). Several morphological and physiological parameters were investigated. The highest mean values of final germination percent (FGP) were registered in cultivar Crawford (95%) followed by Giza111 cultivar (93%) in the presence of P. fluorescens, while, FGP of Clark was 85%. Mean germination time was decreased by the application of P. fluorescens or P. putida in both salt stressed and unstressed traits. All growth parameters were significantly decreased by salinity treatments, particularly at S2. A significant increase in stem length and shoot fresh weight was recorded in plants treated with P. fluorescens. This enhancing trend was followed by the application of P. putida then B. subtilis. Chlorophyll contents and plant soluble proteins were decreased, while proline content was increased as compared with control treatment. Results showed that the salt tolerant cultivar, Crawford, may have a better tolerance strategy against oxidative damages by increasing antioxidant enzymes activities under high salinity stress. These results suggest that salt induced oxidative stress in soybean is generally counteracted by enzymatic defense systems stimulated under harsh conditions. Our results showed that inoculation with plant growth-promoting rhizobacterial (PGPR) alleviated the harmful effects of salinity stress on soybean cultivars. The diversity in the phylogenetic relationship and in the level of genetic among cultivars was assessed by SDS-PAGE and RAPD markers. Among the polymorphism bands, only few were found to be useful as positive or negative markers associated with salt stress. The maximum number of bands (17) was recorded in Crawford, while the minimum number of bands (11) was recorded in Clark. Therefore, the ISSR can be used to identify alleles associated with the salt stress in soybean germplasm. 相似文献
12.
Karmabeer Jena Prasanta Kumar KarZeba Kausar Chittithoti Sudhakara Babu 《Journal of thermal biology》2013
High temperatures are known to cause physiological stress in organisms. This is often associated with enhanced generation of reactive oxygen species (ROS) leading to oxidative damage. The commercially important tropical tasar silkworm Antheraea mylitta has to endure high summer temperature before egg production on the onset of monsoon. In this study the status of pro-oxidants and antioxidants was studied in the testes of male pupae of tasar silkworm A. mylitta under thermal stress condition. Further, to find out the impact of temperature on physiological activity, oxygen consumption rate was measured. The result indicated higher level of thiobarbituric acid reactive substances (TBARS, as an index of lipid peroxidation) and total hydroperoxides in the male pupae exposed to high temperature (40±1 °C). Similarly, it was found that increased levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), ascorbic acid (ASA) and low molecular thiols (L-SH) in testes are more prominent in high temperature rather than in moderate temperature (35±1 oC) suggesting the activation of physiological mechanism to scavenge the ROS produced during stress. Further more, the order of higher level of oxygen consumption rate was observed as high temperature (40±1°C) > moderate temperature (35±1°C) > control groups (28±1°C). Oxygen consumption rate was positively correlated with oxidative stress and antioxidant defence indices. We infer from these findings that the testes of A. mylitta pupae modulate testicular antioxidant responses to thermal stress. 相似文献
13.
14.
Mohamed M. Ali Kaouthar Jeddi Mohamed S. Attia Salah M. Elsayed Mohammad Yusuf Mahmoud S. Osman Mona H. Soliman Kamel Hessini 《Saudi Journal of Biological Sciences》2021,28(6):3204-3213
In the present study, ameliorative capabilities of wuxal amino (bio stimulant) under salt stress has been investigated through adaptive mechanisms and antioxidant potential in tomato plants. In the experiment, two different concentrations (2 cm L-1 and 3 cm L-1) of wuxal amino through foliar application and soil irrigation were applied to the salt (150 mM) treated tomato plants and then morphological traits, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress and antioxidant enzymes activity were assessed at 60 days after planting. The results revealed that salt stress decreased the growth parameters, photosynthetic pigments, soluble sugars and soluble protein whereas, content of proline, ascorbic acid, total phenols, malondialdehyde, hydrogen peroxide and the activity of antioxidant enzymes activity increased under salt stress. Moreover, Wuxal amino application through foliar or soil to salt stressed plants improved morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Interestingly, the deleterious impact of salinity on tomato plants were significantly reduced and it can be evident from reduced MDA and H2O2 levels. These responses varied with the mode (foliar or soil) of application of Wuxal amino under different concentrations (2 cm L-1 and 3 cm L-1). It was concluded that application of Wuxal amino (2 cm L-1, foliar) and (3 cm L-1; soil) proved best and could be commercially used as eco-friendly tool for the protection of tomato plants grown under salinity stress. 相似文献
15.
The role of corneal crystallins in the cellular defense mechanisms against oxidative stress 总被引:2,自引:0,他引:2
The refracton hypothesis describes the lens and cornea together as a functional unit that provides the proper ocular transparent and refractive properties for the basis of normal vision. Similarities between the lens and corneal crystallins also suggest that both elements of the refracton may also contribute to the antioxidant defenses of the entire eye. The cornea is the primary physical barrier against environmental assault to the eye and functions as a dominant filter of UV radiation. It is routinely exposed to reactive oxygen species (ROS)-generating UV light and molecular O(2) making it a target vulnerable to UV-induced damage. The cornea is equipped with several defensive mechanisms to counteract the deleterious effects of UV-induced oxidative damage. These comprise both non-enzymatic elements that include proteins and low molecular weight compounds (ferritin, glutathione, NAD(P)H, ascorbate and alpha-tocopherol) as well as various enzymes (catalase, glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase, and superoxide dismutase). Several proteins accumulate in the cornea at unusually high concentrations and have been classified as corneal crystallins based on the analogy of these proteins with the abundant taxon-specific lens crystallins. In addition to performing a structural role related to ocular transparency, corneal crystallins may also contribute to the corneal antioxidant systems through a variety of mechanisms including the direct scavenging of free radicals, the production of NAD(P)H, the metabolism and/or detoxification of toxic compounds (i.e. reactive aldehydes), and the direct absorption of UV radiation. In this review, we extend the discussion of the antioxidant defenses of the cornea to include these highly expressed corneal crystallins and address their specific capacities to minimize oxidative damage. 相似文献
16.
Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants 总被引:3,自引:0,他引:3
Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of a rice plants
9,311 (Oryza sativa L.) cDNA in rice plants zhonghua11 (Oryza sativa L.). The genetic engineering enabled the plants to accumulate SBPase in chloroplasts and resulted in enhanced tolerance to
high temperature stress during growth of young seedlings. Moreover, CO2 assimilation of transgenic plants was significantly more tolerant to high temperature than that of wild-type plants. The
analyses of chlorophyll fluorescence and the content and activation of SBPase indicated that the enhancement of photosynthesis
to high temperature was not related to the function of photosystem II but to the content and activation of SBPase. Western
blotting analyses showed that high temperature stress led to the association of SBPase with the thylakoid membranes from the
stroma fractions. However, such an association was much more pronounced in wild-type plants than that in transgenic plants.
The results in this study suggested that under high temperature stress, SBPase maintained the activation of ribulose-1,5-bisphosphate
carboxylase-oxygenase (Rubisco) by preventing the sequestration of Rubisco activase to the thylakoid membranes from the soluble
stroma fraction and thus enhanced the tolerance of CO2 assimilation to high temperature stress. The results suggested that overexpression of SBPase might be an effective method
for enhancing high temperature tolerance of plants. 相似文献
17.
《Journal of Plant Interactions》2013,8(2):105-113
Abstract The effects of exogenous silicon (Si) on leaf relative water content (RWC), and the growth, Si concentrations, lipid peroxidation (MDA), lipoxygenase (LOX) activity, proline and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activity of some antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX) in shoots of ten chickpea cultivars grown under drought were investigated. Drought stress decreased the growth of all the cultivars while applied Si improved the growth at least five of the 10 chickpea cultivars. Silicon applied to the soil at 100 mg kg?1 significantly increased Si concentrations of the cultivars and counteracted the deleterious effects of drought in 5 of the ten chickpea cultivars by increasing their RWC. In most cultivars tested H2O2, proline and MDA content and LOX activity were increased by drought whereas application of Si decreased their levels. APX activity was increased by drought but it was depressed by Si. In general, SOD and CAT activities of the cultivars were decreased by drought. Depending on cultivars, the CAT activity was decreased, and increased or unchanged in response to applied Si, while the SOD activity of the cultivars increased or unchanged by Si. The non-enzymatic antioxidant activity of the cultivars was also increased by Si. These observations implied an essential role for Si in minimizing drought stress-induced limitation of the growth and oxidative membrane damage in chickpea plants. 相似文献
18.
19.
20.
Tang L Kwon SY Kim SH Kim JS Choi JS Cho KY Sung CK Kwak SS Lee HS 《Plant cell reports》2006,25(12):1380-1386
Oxidative stress is a major damaging factor for plants exposed to environmental stresses. In order to develop transgenic potato plants with enhanced tolerance to environmental stress, the genes of both Cu/Zn superoxide dismutase and ascorbate peroxidase were expressed in chloroplasts under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants). SSA plants showed enhanced tolerance to 250 μM methyl viologen, and visible damage in SSA plants was one-fourth that of non-transgenic (NT) plants that were almost destroyed. In addition, when SSA plants were treated with a high temperature of 42°C for 20 h, the photosynthetic activity of SSA plants decreased by only 6%, whereas that of NT plants decreased by 29%. These results suggest that the manipulation of the antioxidative mechanism of the chloroplasts may be applied in the development of industrial transgenic crop plants with increased tolerance to multiple environmental stresses.Communicated by I. S. Chung 相似文献