首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of chlorosis and loss of PSII were compared in young spinach plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll could be detected already after the first week of deficiency and preceded any permanent functional inhibition of PSII as detected by changes in the chlorophyll fluorescence parameter Fv/Fm. A substantial decrease in Fv/Fm was observed only after the second week of deficiency. After 4 weeks, the plants had lost about 70% of their original chlorophyll content, but fluorescence data indicated that 80% of the existing PSII centers were still capable of initiating photosynthetic electron transport. The degradation of the photosynthetic apparatus without loss of PSII activity was due to changes in protein turnover, especially of the PSII D1 reaction center protein. Already by day 7 of deficiency, a 1.4-fold increase in D1 protein synthesis was observed measured as incorporation of 14C-leucine. Immunological determination by western-blotting did not reveal a change in D1 protein content. Thus, D1 protein was also degraded more rapidly. The increased turnover was high enough to prevent any loss or inhibition of PSII. After 3 weeks, D1 protein synthesis on a chlorophyll basis was further increased by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%. Immunological determination revealed that together with the D1 protein also other polypeptides of PSII became degraded. This process prevented a large accumulation of photo-inactivated PSII centers. However, it initiated the breakdown of the other thylakoid proteins, especially of LHCII, resulting in the observed chlorosis. Together with the change in protein turnover and stability, a characteristic change in thylakoid protein phosphorylation was observed. In the deficient plants steady state phosphorylation of both LHCII and PSII proteins was increased in the dark. In the light phosphorylation of PSII proteins was stimulated and after 3 weeks of deficiency was even higher in the deficient leaves than in the control plants. In contrast, the phosphorylation level of LHCII decreased in the light and could hardly be detected after 3 weeks of deficiency. Phosphorylation of the reaction center polypeptides presumably increased their stability against proteolytic attack, whereas phosphorylated LHCII seems to be the substrate for proteolysis.  相似文献   

2.
Chen Y  Xu DQ 《The New phytologist》2006,169(4):789-798
Plants often regulate the amount and size of light-harvesting antenna (LHCII) to maximize photosynthesis at low light and avoid photodamage at high light. Gas exchange, 77 K chlorophyll fluorescence, photosystem II (PSII) electron transport as well as LHCII protein were measured in leaves irradiated at different light intensities. After irradiance transition from saturating to limiting one leaf photosynthetic rate in some species such as soybean and rice declined first to a low level, then increased slowly to a stable value (V pattern), while in other species such as wheat and pumpkin it dropped immediately to a stable value (L pattern). Saturating pre-irradiation led to significant declines of both 77 K fluorescence parameter F685/F735 and light-limited PSII electron transport rate in soybean but not in wheat leaves, indicating that some LHCIIs dissociate from PSII in soybean but not in wheat leaves. The L pattern of LHCII-decreased rice mutant and the V pattern of its wild type demonstrate that the V pattern is linked to dissociation/reassociation of some LHCIIs from/to PSII.  相似文献   

3.
Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb2+ stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.  相似文献   

4.
Mangroves are important as primary producers in estuarine food chains. Zinc is often a major anthropogenic contaminant in estuarine ecosystems and has potential ecotoxicological consequences for mangrove communities. Accumulation, distribution and excretion of zinc in the leaf tissue of the grey mangrove, Avicennia marina was studied using SEM X-ray microanalysis and Atomic Absorption Spectroscopy. The first leaves of A. marina grown in 500 μg Zn as ZnCl2 per g of dry soil were found to accumulate 106.3±18.5 μg Zn per g dry tissue, significantly higher than control plants, after a 7-month period. Washings from first leaves contained significantly higher amounts of zinc (0.30±0.14 μg/cm2 Zn) than control plants after 1 month, suggesting excretion of zinc from glandular trichomes. SEM X-ray microanalysis revealed salt crystals exuded from glandular tissue on the adaxial surface of first leaves to be composed of alkaline metals and zinc in zinc treated plants. SEM X-ray microanalysis of seedlings dosed with 4 g/l Zn as Zn Cl2 revealed a decreasing Zn gradient from xylem tissue, through photosynthetic mesophyll, to hypodermal (water) tissue. A subsequent increase in Zn concentration was observed in glandular tissue. Cell wall Zn concentrations were consistently higher than intracellular Zn concentrations.  相似文献   

5.
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll–protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements. Dedicated to Prof. Zbigniew Kaniuga on the 25th anniversary of his initiation of studies on chilling-induced stress in plants.  相似文献   

6.
Photosynthetic electron flow, polypeptide pattern, presence of chlorophyll-protein complexes, and phosphorylation of thylakoid polypeptides have been investigated in differentiated mesophyll (M) and bundle sheath (B) thylakoids of the C4 plant Zea mays. The polypeptide pattern of M thylakoids and their photosynthetic electron flow are comparable to those of other green plants. B thylakoids exhibit only photosystem I (PSI) activity, contain only traces of the PSII light harvesting (LHCII) polypeptide, do not bind [3H] diuron, and lack polypeptides of the water-oxidation complex of PSII and the herbicide binding 32-kDa polypeptide, as detected by specific antibodies. However, B thylakoids possess a partially active PSII reaction center, as demonstrated by light-dependent reduction of silicomolybdate with 1,5-diphenylcarbazide (DPC) as an electron donor, and the presence of the PSII reaction center polypeptides of 44-47 kDa. Only one chlorophyll a-protein complex, corresponding to the PSI reaction center-core antenna, was detectable in B thylakoids, as opposed to chlorophyll a and chlorophyll a,b-protein complexes present in M thylakoids. The light-dependent, membrane-bound kinase activity present in M thylakoids could not be detected in B thylakoids which, nevertheless, contain a protein kinase able to phosphorylate casein. A total of 19 differences between the electrophoretic pattern of B and M thylakoid polypeptides were observed. The mRNA coding for the LHCII polypeptide is primarily, if not exclusively, localized in M cells. The development of PSII complex precedes that of PSI during the differentiation of B and M chloroplasts in expanding leaves of light-grown plants and during the greening of dark-grown etiolated seedlings. The differentiation of the maize leaf into cells programmed to form B or M chloroplasts does not require light. In light-grown plants, the differentiation of B and M thylakoids occurred progressively from the base of the leaf and was completed at 4-5 cm from the leaf base.  相似文献   

7.
The ability of leaves to acclimate photosynthetically to low temperature was examined during leaf development in winter rye plants ( Secale cereale L. cv. Puma) grown at 20°C or at 6°C. All leaves grown at 6°C exhibit increased chlorophyll (Chl) levels per leaf area, higher rates of uncoupled, light-saturated photosystem I (PSI) electron transport, and slower increases in photosystem II (PSII) electron transport capacity, when compared with 20°C leaves. The stoiehiometry of PSI and PSII was estimated for each leaf age class by quantifying Chl in elcctrophorctic separations of Chl-protein complexes. The ratio of PSII/PSI electron transport in 20°C leaves is highly correlated with the ratio of core Chl a -proteins associated with PSII (CPa) to those associated with PSI (CP1). In contrast, PSII/PSI electron transport in 6°C leaves is not as well correlated with CPa/CP1 and is related, in part, to the amount and organization of light-harvesting Chl a/b -proteins associated with PSII. CPa/CP1 increases slowly in 6°C leaves, although the ratio of CPa/CP1 in mature 20°C and 6°C leaves is not different. The results suggest that increased PSI activity at low temperature is not related to an increase in the relative proportion of PSI and may reflect, instead, a regulatory change. Photosynthetic acclimation to low environmental temperature involves increased PSI activity in mature leaves shifted to 6°C. In leaves grown entirely at 6°C, however, acclimation includes both increased PSI activity and modifications in the rate of accumlation of PSII and in the organization of LHCII.  相似文献   

8.
This paper presents a study of the metabolic response (dark respiration intensity, photosystem II efficiency, metabolic activity) and the yield of barley treated with 24-epibrassinolide and subjected to high-temperature stress. Transport of exogenously applied 24-epibrassinolide in barley and changes in the profile of brassinosteroids that may occur in tissues after 24-epibrassinolide application were also studied. The water solution of 24-epibrassinolide (0.005 and 0.25 mg dm−3) was applied via infiltration of the first and second leaves of 12-day-old seedlings. Control plants were treated with water solution of hormone solvent (ethanol). Fifteen-day-old plants were subjected to high-temperature stress (42°C for 3 h). The influence of hormone treatment and stress conditions was investigated in the first and second leaves based on measurements of PSII efficiency. The aftereffect of plant treatment was investigated in the seventh leaf (measurements of PS II efficiency, dark respiration intensity, metabolic activity). The transport efficiency of 24-epibrassinolide exogenously applied to the first and second leaves, as well as the profile of other brassinosteroids, was also measured on the seventh leaf. Finally, yield formation was estimated. 24-epibrassinolide showed protective action, which manifested itself in the improved functioning of PSII, but this was observed in case of higher hormone concentration and only for the first, older leaf. The PSII efficiency of the seventh leaf was similar in plants treated with brassinosteroid and in the control plants, whereas the respiration intensity and metabolic activity decreased in plants previously treated with higher concentration of 24-epibrassinolide. The use of a higher hormone concentration at the seedling phase ultimately resulted also in lower crop yield. Brassinosteroids—brassinolide and castasterone—were detected in barley leaves. 24-epibrassinolide was found only in trace amounts in control plants. Its exogenous application directly to the apoplast of the first and second leaves resulted in an increase in the 24-epibrassinolide content in the seventh leaf, but did not depend on whether a high or low concentration had been applied to the plants.  相似文献   

9.
Havaux M  Tardy F 《Plant physiology》1997,113(3):913-923
The chlorophyll-b-less chlorina-f2 barley mutant is deficient in the major as well as some minor light-harvesting chlorophyll-protein complexes of photosystem II (LHCII). Although the LHCII deficiency had relatively minor repercussions on the leaf photosynthetic performances, the responses of photosystem II (PSII) to elevated temperatures and to bright light were markedly modified. The chlorina-f2 mutation noticeably reduced the thermostability of PSII, with thermal denaturation of PSII starting at about 35[deg]C and 38.5[deg]C in chlorina-f2 and in the wild type, respectively. The increased susceptibility of PSII to heat stress in chlorina-f2 leaves was due to the weakness of its electron donor side, with moderate heat stress causing detachment of the 33-kD extrinsic PSII protein from the oxygen-evolving complex. Prolonged dark adaptation of chlorina-f2 leaves was also observed to inhibit the PSII donor side. However, weak illumination slowly reversed the dark-induced inhibition of PSII in chlorina-f2 and cancelled the difference in PSII thermostability observed between chlorina-f2 and wild-type leaves. The mutant was more sensitive to photoinhibition than the wild type, with strong light stress impairing the PSII donor side in chlorina-f2 but not in the wild type. This difference was not observed in anaerobiosis or in the presence of 3-(3,4-dichlorophenyl)- 1,1-dimethylurea, diuron. The acceptor side of PSII was only slightly affected by the mutation and/or the aforementioned stress conditions. Taken together, our results indicate that LHCII stabilize the PSII complexes and maintain the water-oxidizing system in a functional state under varying environmental conditions.  相似文献   

10.
The distribution of xanthophyll cycle pigments (violaxanthin plus antheraxanthin plus zeaxanthin [VAZ]) among photosynthetic pigment-protein complexes was examined in Vinca major before, during, and subsequent to a photoinhibitory treatment at low temperature. Four pigment-protein complexes were isolated: the core of photosystem (PS) II, the major light-harvesting complex (LHC) protein of PSII (LHCII), the minor light-harvesting proteins (CPs) of PSII (CP29, CP26, and CP24), and PSI with its LHC proteins (PSI-LHCI). In isolated thylakoids 80% of VAZ was bound to protein independently of the de-epoxidation state and was found in all complexes. Plants grown outside in natural sunlight had higher levels of VAZ (expressed per chlorophyll), compared with plants grown in low light in the laboratory, and the additional VAZ was mainly bound to the major LHCII complex, apparently in an acid-labile site. The extent of de-epoxidation of VAZ in high light and the rate of reconversion of Z plus A to V following 2.5 h of recovery were greatest in the free-pigment fraction and varied among the pigment-protein complexes. Photoinhibition caused increases in VAZ, particularly in low-light-acclimated leaves. The data suggest that the photoinhibitory treatment caused an enrichment in VAZ bound to the minor CPs caused by de novo synthesis of the pigments and/or a redistribution of VAZ from the major LHCII complex.  相似文献   

11.
Plants use light to fix carbon through the process of photosynthesis but light also causes photoinhibition, by damaging photosystem II (PSII). Plants can usually adjust their rate of PSII repair to equal the rate of damage, but under stress conditions or supersaturating light-intensities damage may exceed the rate of repair. Light-induced chloroplast movements are one of the many mechanisms plants have evolved to minimize photoinhibition. We found that chloroplast movements achieve a measure of photoprotection to PSII by altering the distribution of photoinhibition through depth in leaves. When chloroplasts are in the low-light accumulation arrangement a greater proportion of PSII damage occurs near the illuminated surface than for leaves where the chloroplasts are in the high-light avoidance arrangement. According to our findings chloroplast movements can increase the overall efficiency of leaf photosynthesis in at least two ways. The movements alter light profiles within leaves to maximize photosynthetic output and at the same time redistribute PSII damage throughout the leaf to reduce the amount of inhibition received by individual chloroplasts and prevent a decrease in photosynthetic potential.  相似文献   

12.
Several proteins of photosystem II (PSII) and its light-harvesting antenna (LHCII) are reversibly phosphorylated according to light quantity and quality. Nevertheless, the interdependence of protein phosphorylation, nonphotochemical quenching, and efficiency of electron transfer in the thylakoid membrane has remained elusive. These questions were addressed by investigating in parallel the wild type and the stn7, stn8, and stn7 stn8 kinase mutants of Arabidopsis (Arabidopsis thaliana), using the stn7 npq4, npq4, npq1, and pgr5 mutants as controls. Phosphorylation of PSII-LHCII proteins is strongly and dynamically regulated according to white light intensity. Yet, the changes in phosphorylation do not notably modify the relative excitation energy distribution between PSII and PSI, as typically occurs when phosphorylation is induced by “state 2” light that selectively excites PSII and induces the phosphorylation of both the PSII core and LHCII proteins. On the contrary, under low-light conditions, when excitation energy transfer from LHCII to reaction centers is efficient, the STN7-dependent LHCII protein phosphorylation guarantees a balanced distribution of excitation energy to both photosystems. The importance of this regulation diminishes at high light upon induction of thermal dissipation of excitation energy. Lack of the STN7 kinase, and thus the capacity for equal distribution of excitation energy to PSII and PSI, causes relative overexcitation of PSII under low light but not under high light, leading to disturbed maintenance of fluent electron flow under fluctuating light intensities. The physiological relevance of the STN7-dependent regulation is evidenced by severely stunted phenotypes of the stn7 and stn7 stn8 mutants under strongly fluctuating light conditions.Several proteins of PSII and its light-harvesting antenna (LHCII) are reversibly phosphorylated by the STN7 and STN8 kinase-dependent pathways according to the intensity and quality of light (Bellafiore et al., 2005; Bonardi et al., 2005). The best-known phosphorylation-dependent phenomenon in the thylakoid membrane is the state transition: a regulatory mechanism that modulates the light-harvesting capacity between PSII and PSI. According to the traditional view, “state 1” prevails when plants are exposed to far-red light (state 1 light), which selectively excites PSI. Alternatively, thylakoids are in “state 2” when plants are exposed to blue or red light (state 2 light), favoring PSII excitation. In state 1, the yield of fluorescence from PSII is higher in comparison with state 2 (for review, see Allen and Forsberg, 2001). State transitions are dependent on the phosphorylation of LHCII proteins (Bellafiore et al., 2005) and their association with PSI proteins, particularly PSI-H (Lunde et al., 2000). Under state 2 light, both the PSII core and LHCII proteins are strongly phosphorylated, whereas the state 1 light induces dephosphorylation of both the PSII core and LHCII phosphoproteins (Piippo et al., 2006; Tikkanen et al., 2006). In nature, however, such extreme changes in light quality rarely occur. The intensity of light, on the contrary, fluctuates frequently in all natural habitats occupied by photosynthetic organisms, thus constantly modulating the extent of thylakoid protein phosphorylation in a highly dynamic manner (Tikkanen et al., 2008a).The regulation of PSII-LHCII protein phosphorylation by the quantity of light is much more complex than the regulatory circuits induced by the state 1 and state 2 lights. Whereas changes in light quality induce a concurrent increase or decrease in the phosphorylation levels of both the PSII core (D1, D2, and CP43) and LHCII (Lhcb1 and Lhcb2) proteins, the changes in white light intensity may influence the kinetics of PSII core and LHCII protein phosphorylation in higher plant chloroplasts even in opposite directions (Tikkanen et al., 2008a). Indeed, it is well documented that low light (LL; i.e. lower than that generally experienced during growth) induces strong phosphorylation of LHCII but relatively weak phosphorylation of the PSII core proteins. Exposure of plants to high light (HL) intensities, on the contrary, promotes the phosphorylation of PSII core proteins but inhibits the activity of the LHCII kinase, leading to dephosphorylation of LHCII proteins (Rintamäki et al., 2000; Hou et al., 2003).Thylakoid protein phosphorylation induces dynamic migrations of PSII-LHCII proteins along the thylakoid membrane (Bassi et al., 1988; Iwai et al., 2008) and modulation of thylakoid ultrastructure (Chuartzman et al., 2008). According to the traditional state transition theory, the phosphorylation of LHCII proteins decreases the antenna size of PSII and increases that of PSI, which is reflected as a quenched fluorescence emission from PSII. Alternatively, subsequent dephosphorylation of LHCII increases the antenna size of PSII and decreases that of PSI, which in turn is seen as increased PSII fluorescence (Bennett et al., 1980; Allen et al., 1981; Allen and Forsberg, 2001). This view was recently challenged based on studies with thylakoid membrane fractions, revealing that modulations in the relative distribution of excitation energy between PSII and PSI by LHCII phosphorylation specifically occur in the areas of grana margins, where both PSII and PSI function under the same antenna system, and the energy distribution between the photosystems is regulated via a more subtle mechanism than just the robust migration of phosphorylated LHCII (Tikkanen et al., 2008b). It has also been reported that most of the PSI reaction centers are located in the grana margins in a close vicinity to PSII-LHCII-rich grana thylakoids (Kaftan et al., 2002), providing a perfect framework for the regulation of excitation energy distribution from LHCII to both PSII and PSI.When considering the natural light conditions, the HL intensities are the only known light conditions that in higher plant chloroplasts specifically dephosphorylate only the LHCII proteins but not the PSII core proteins. However, such light conditions do not lead to enhanced function of PSII. Instead, the HL conditions strongly down-regulate the function of PSII via nonphotochemical quenching of excitation energy (NPQ) and PSII photoinhibition (for review, see Niyogi, 1999). On the other hand, after dark acclimation of leaves and relaxation of NPQ, PSII functions much more efficiently when plants/leaves are transferred to LL despite strong phosphorylation of LHCII, as compared with the low phosphorylation state of LHCII upon transfer to HL conditions.The delicate regulation of thylakoid protein phosphorylation in higher plant chloroplasts according to prevailing light intensity is difficult to integrate with the traditional theory of state transitions (i.e. the regulation of the absorption cross-section of PSII and PSI by reversible phosphorylation of LHCII). Moreover, besides LHCII proteins, reversible phosphorylation of the PSII core proteins may also play a role in dynamic light acclimation of plants. Recently, we demonstrated that the PSII core protein phosphorylation is a prerequisite for controlled turnover of the PSII reaction center protein D1 upon photodamage (Tikkanen et al., 2008a). This, however, does not exclude the possibility that the strict regulation of PSII core protein phosphorylation is also connected to the regulation of light harvesting and photosynthetic electron transfer. Moreover, the interactions between PSII and LHCII protein phosphorylation, nonphotochemical quenching, and cyclic electron flow around PSI in the regulation of photosynthetic electron transfer reactions remain poorly understood. To gain a deeper insight into such regulatory networks, we explored the effect of strongly fluctuating white light on chlorophyll (chl) fluorescence in Arabidopsis (Arabidopsis thaliana) mutants differentially deficient in PSII-LHCII protein phosphorylation and/or the regulatory systems of NPQ.  相似文献   

13.
《BBA》2014,1837(12):1981-1988
Minor light-harvesting complexes (Lhcs) CP24, CP26 and CP29 occupy a position in photosystem II (PSII) of plants between the major light-harvesting complexes LHCII and the PSII core subunits. Lack of minor Lhcs in vivo causes impairment of PSII organization, and negatively affects electron transport rates and photoprotection capacity. Here we used picosecond-fluorescence spectroscopy to study excitation-energy transfer (EET) in thylakoid membranes isolated from Arabidopsis thaliana wild-type plants and knockout lines depleted of either two (koCP26/24 and koCP29/24) or all minor Lhcs (NoM). In the absence of all minor Lhcs, the functional connection of LHCII to the PSII cores appears to be seriously impaired whereas the “disconnected” LHCII is substantially quenched. For both double knock-out mutants, excitation trapping in PSII is faster than in NoM thylakoids but slower than in WT thylakoids. In NoM thylakoids, the loss of all minor Lhcs is accompanied by an over-accumulation of LHCII, suggesting a compensating response to the reduced trapping efficiency in limiting light, which leads to a photosynthetic phenotype resembling that of low-light-acclimated plants. Finally, fluorescence kinetics and biochemical results show that the missing minor complexes are not replaced by other Lhcs, implying that they are unique among the antenna subunits and crucial for the functioning and macro-organization of PSII.  相似文献   

14.
Evolution of vascular plants required compromise between photosynthesis and photodamage. We analyzed representative species from two divergent lineages of vascular plants, lycophytes and euphyllophytes, with respect to the response of their photosynthesis and light‐harvesting properties to increasing light intensity. In the two analyzed lycophytes, Selaginella martensii and Lycopodium squarrosum, the medium phase of non‐photochemical quenching relaxation increased under high light compared to euphyllophytes. This was thought to be associated with the occurrence of a further thylakoid phosphoprotein in both lycophytes, in addition to D2, CP43 and Lhcb1‐2. This protein, which showed light intensity‐dependent reversible phosphorylation, was identified in S. martensii as Lhcb6, a minor LHCII antenna subunit of PSII. Lhcb6 is known to have evolved in the context of land colonization. In S. martensii, Lhcb6 was detected as a component of the free LHCII assemblies, but also associated with PSI. Most of the light‐induced changes affected the amount and phosphorylation of the LHCII assemblies, which possibly mediate PSI–PSII connectivity. We propose that Lhcb6 is involved in light energy management in lycophytes, participating in energy balance between PSI and PSII through a unique reversible phosphorylation, not yet observed in other land plants.  相似文献   

15.
Gáspár L  Sárvári E  Morales F  Szigeti Z 《Planta》2006,223(5):1047-1057
The cause of the strong non-photochemical fluorescence quenching was examined in maize (Zea mays L.) plants that were treated with lincomycin during the 72 h period of greening. They were deficient in core complexes but seemed to contain the full complement of antennae. The following results were obtained: (1) High F o could not be attributed to the dark reduction of Q A but to the presence of a high amount of not properly organized antenna complexes due to the inhibited synthesis of reaction centres. (2) On illumination fluorescence intensity dropped considerably below F o within 20 s, and reached a steady state still below F o . (3) Slowly relaxing part of non-photochemical quenching was significantly higher than in control plants. (4) De-epoxidation state was constant, and corresponded to the maximal value of the control. (5) Free Lhca1/4 dimers could be detected in all submembrane fractions, including the grana, obtained by digitonin fractionation. (6) Increase in the 679 and 700 nm fluorescence emissions could be attributed to the monomerisation of part of LHCII and to the presence of free Lhca2 or LHCII aggregates, respectively. (7) LHCII or PSII+LHCII and Lhca1/4 interaction may contribute to the increase of long-wavelength fluorescence in the granal fraction. We assume that the elevated fluorescence quenching of monomeric LHCII as well as the interaction between LHCII or PSII+LHCII and Lhca1/4 can be considered as an explanation for the extensive non-photochemical fluorescence quenching in lincomycin treated plants. The permanent presence of zeaxanthin may have contributed to the fast formation of quenching.  相似文献   

16.
Ear photosynthesis may be an important source of C for grain growth in water-stressed plants of cereals. The main objectives of this work were to determine the stability of the photosynthetic apparatus and the photochemical efficiency of ears in plants subjected to post-anthesis drought. Plants of wheat ( Triticum aestivum L. cv. Granero INTA) were grown in pots under a rain shelter and subjected to water stress (soil water potential around −0.6 to −0.8 MPa) starting 4  days after anthesis. Post-anthesis drought substantially accelerated the loss of chlorophyll, Rubisco and the light-harvesting complex of photosystem II (LHCII) in the flag leaf, but the degradation of these photosynthetic components was much less affected by water deficit in awns and ear bracts. Quantum yield of PSII (ΦPSII) decreased in leaves of water-stressed plants. In contrast, ear bracts had a higher ΦPSII than leaves, and ΦPSII of ear bracts did not decrease at all in response to drought. Removing the grains immediately before fluorescence measurements (less than 30 min) slightly reduced ΦPSII, indicating that CO2 supplied by grain respiration may contribute to the high photochemical efficiency of ears in droughted plants. However, other factors may be involved in maintaining high ΦPSII, since even in the absence of grains ΦPSII remained much higher in ear bracts than in the flag leaf. The relative stability of ear photosynthetic components and their relatively high photochemical efficiency may help to maintain ear photosynthesis during the grain filling period in droughted plants.  相似文献   

17.
尖叶拟船叶藓的77K荧光光谱及对强光照的短期适应   总被引:1,自引:0,他引:1  
报道了东亚特有濒危植物尖叶拟船叶藓(Dolichomitriopsis diversiformis)在不同光质的光照诱导下的低温77K荧光光谱及状态转移的初步研究结果,实验中,尖叶拟船叶藓在77K下出现了3条发射带,分别是F680、F685、F720nm,并没有出现存在于大部分高等植物中的F695nm和F740nm两个峰.经过PSⅡ光诱导后、在77K下出现了F680nm,这个峰在77K下出现是首次报道,而以前的研究认为只在4K下才出现这一条光谱带,这一结果表明尖叶拟船叶藓叶绿体的两个光系统结构与其他高等植物存在着差异。在自然光下,PSⅡ与PSⅠ的总能量比是2.04,经过15min的PSⅡ光(670nm)诱导后,PSⅡ与PSⅠ的总能量比变成了1.28(状态2),当用15min的PSⅠ光(716nm)照射后,PSⅡ与PSⅠ的总能量比从2.04变成了3.4l(状态1)。在自然光下,由尖叶拟船叶藓的光系统的外部LHCⅡ所吸收的激发能是整个光系统激发能的21.19%.这说明尖叶拟船叶藓对光的短期调节能力是21.19%.尖叶拟船叶藓的光系统的外部LHCⅡ有51.7%位于PSⅡ中,48.3%在PSⅠ中.  相似文献   

18.
Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.  相似文献   

19.
Mobile light-harvesting complex II (LHCII) is implicated in the regulation of excitation energy distribution between Photosystem I (PSI) and Photosystem II (PSII) during state transitions. To investigate how LHCII interacts with PSI during state transitions, PSI was isolated from Arabidopsis thaliana plants treated with PSII or PSI light. The PSI preparations were made using digitonin. Chemical cross-linking using dithio-bis(succinimidylpropionate) followed by diagonal electrophoresis and immunoblotting showed that the docking site of LHCII (Lhcb1) on PSI is comprised of the PSI-H, -L, and -I subunits. This was confirmed by the lack of energy transfer from LHCII to PSI in the digitonin-PSI isolated from plants lacking PSI-H and -L. Digitonin-PSI was purified further to obtain an LHCII.PSI complex, and two to three times more LHCII was associated with PSI in the wild type in State 2 than in State 1. Lhcb1 was also associated with PSI from plants lacking PSI-K, but PSI from PSI-H, -L, or -O mutants contained only about 30% of Lhcb1 compared with the wild type. Surprisingly, a significant fraction of the LHCII bound to PSI in State 2 was not phosphorylated. Cross-linking prior to sucrose gradient purification resulted in copurification of phosphorylated LHCII in the wild type, but not with PSI from the PSI-H, -L, and -O mutants. The data suggest that migration of LHCII during state transitions cannot be explained sufficiently by different affinity of phosphorylated and unphosphorylated LHCII for PSI but is likely to involve structural changes in thylakoid organization.  相似文献   

20.
Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 μmol m−2 s−1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号