首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl–acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.  相似文献   

2.
以海南近海岸陆地上正常生长、结实的3个不同基因型麻疯树(南油1、2和3号)种子为材料,分析比较3种种子及其种子油的理化特性.结果表明:南油1、2和3号麻疯树种子长、宽、厚度和表面积差异均不显著,但南油2号种子千粒重显著大于1、3号、不完善粒率显著小于1、3号,其种子饱满度好,结实性状优.南油3号种子种仁含油量显著高于1、2号,而1、2号间无显著差异.3种麻疯树种子油的过氧化值、折射率和皂化值无显著差异,而南油2号的酸值显著低于1、3号;三者碘值皆低于100,且南油2号的碘值显著小于1、3号.3种麻疯树油脂肪酸成分主要是油酸、棕榈酸、亚油酸、硬脂酸和十七碳酸,且皆以不饱和脂肪酸为主,南油2号的饱和脂肪酸含量相对较高.与南油1号相比, 南油2、3号的应用潜力相对大.  相似文献   

3.
干旱胁迫造成两小麦品系类囊体膜上的单半乳糖脂甘油二酯(MGDG)、双半乳糖脂甘油二酯(DGDG)、磷脂酰胆碱(PG)以及叶绿素含量显著下降,甜菜碱预处理能缓解这些组分的下降.干旱胁迫下,抗旱型小麦品系HF9 70 3的硫代异鼠李糖甘油二酯(SQDG)、反式十六碳-烯酸[16:1(3t)]含量显著上升,MGDG中亚麻酸(18:3)相对含量显著下降;而干旱敏感型品系SN215953则表现为SQDG、16:1(3t)含量显著下降,MGDG中脂肪酸变化不明显,这可能是两个小麦品系抗旱性差异的重要原因之一;甜菜碱处理能显著减小干旱处理与对照之间的差异,且对SN215953的作用较HF9703大.另外,干旱胁迫引起类囊体膜上Ca2 -ATPase活性、Hill反应活性及叶片净光合速率下降,外源甜菜碱能缓解其下降趋势.  相似文献   

4.
We investigated the effects of exogenous glycinebetaine (GB) and drought stress (DS) on grain yield (GY) and production of dry matter (DM) and osmolytes in two maize (Zea mays L.) cultivars i.e. Shaandan 9 (S9) and Shaandan 911 (S911) during the entire growing period. Drought stress substantially reduced DM and GY but increased free proline, endogenous GB, soluble sugar and K+ concentrations in leaves of both cultivars. The DM production, GY, drought index (DI) and concentrations of these osmolytes were greater for S9 than those for S911 under DS. The significant differences in these parameters suggested that S9 was more drought-tolerant as compared to S911. Additionally, foliar application of GB increased the concentrations of all osmolytes measured, DM and GY of both cultivars under DS. These positive responses of exogenous GB spray were more pronounced in S911 as compared to those in S9. Further correlation analysis involving a number of parameters indicated that maize production was tighterly correlated with accumulation of the osmolytes measured during DS rather than well-watered controls. Accordingly, this study demonstrated the notion of an anti-drought role of exogenous GB by osmoregulation under DS, particularly in this drought sensitive cultivar. Thus, exogenous GB application might be firstly used with drought sensitive species/cultivars when exposed to DS.  相似文献   

5.
Rice (Oryza sativa L.) grains or seeds are known to lose much of their nutrient and antioxidant contents, following polishing. The current study was undertaken to evaluate and compare the carbohydrate content and antioxidant parameters in the unpolished and polished seeds of three edible indica rice cultivars, namely Swarna (SW), the most popular indica rice cultivar in India and aromatic or scented cultivars Gobindobhog (GB) and Pusa Basmati (PB). While both the sucrose and starch content was the maximum in PB seeds (both unpolished and polished), the amylose content was the highest in SW polished seeds. SW polished seeds were superior as compared to GB and PB cultivars in terms of total antioxidant capacity, DPPH radical scavenging and Fe(II) chelation potential, as well as the highest lipoxygenase (LOX) inhibition or H2O2 scavenging potential, probably due to the maximum accumulation of total phenolics and flavonoids, the two important antioxidants. The reducing power ability was, however, identical in both SW and GB polished seeds. The PB polished seeds were more potent in superoxide and hydroxyl scavenging, whereas GB in nitric oxide (NO) scavenging. The common observation noted after polishing of seeds was the reduction in the level of carbohydrates and antioxidant potential, though the extent of reduction varied in the three cultivars. The only exception was GB, where there was no alteration in NO scavenging potential even after polishing. Our study showed the better performance of SW polished seeds with respect to higher amylose content and majority of the tested parameters governing antioxidant capacity and radical scavenging potential, thus highlighting the greater dietary significance of SW over the other two cultivars.  相似文献   

6.
木兰科四种植物种子油的提取及脂肪酸成分分析   总被引:3,自引:1,他引:2  
刘举  陈继富 《广西植物》2013,33(2):208-213
采用超声波辅助提取法和微波辅助提取法同时提取白玉兰、凹叶厚朴、深山含笑和醉香含笑四种木兰科植物的种子油,种子油甲酯化后,运用气相色谱—质谱联用技术测定其脂肪酸成分。结果表明:四种植物种子油的提取率不同,白玉兰平均为27.35%、凹叶厚朴23.34%、深山含笑31.66%,醉香含笑9.27%。不同提取方法所得到的种子油脂肪酸成分和相对含量不同,但四种种子油的主要脂肪酸成分相同,包括油酸、亚油酸、硬脂酸和棕榈酸。  相似文献   

7.
To minimize the damaging effects of stresses, plant growth regulators (PGRs) are widely used to sustain the plant life under stress-prone environments. So, a study was carried out to evaluate the response of two canola (Brassica napus L.) cultivars, Dunkeld and Cyclone, to foliar-applied two potential PGRs, nitric oxide (NO) and 5-aminolevulinic acid, under water deficit conditions. In this study, the levels of NO and ALA used were 0.02 and 0.895 mM, respectively. Plants of both canola cultivars were subjected to control (100% field capacity) and water deficit (60% field capacity). Drought stress significantly decreased growth, chlorophyll pigments, relative water contents (RWC), and soluble proteins, while it increased relative membrane permeability (RMP), proline, glycinebetaine (GB), malondialdehyde (MDA), total phenolics, and activities of catalase (CAT) and peroxidase (POD) enzymes in both cultivars. Foliar application of PGRs improved growth, chlorophyll a, GB, total phenolics, CAT activity, and total soluble proteins, while it decreased RMP, MDA, and POD activity in both canola cultivars. Other physio-biochemical attributes such as chlorophyll b, RWC, hydrogen peroxide (H2O2) and proline contents as well as superoxide dismutase (SOD) activity remained unaffected due to application of PGRs. So, the results of the present study suggest that exogenous application of NO and ALA could be useful to enhance the drought tolerance of canola plants by up-regulating the oxidative defense system, osmoprotectant accumulation, and minimizing the lipid peroxidation.  相似文献   

8.

Background

Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid) which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission.

Results

The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s) through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78%) and a corresponding reduction in polyunsaturated fatty acids (< 3%) in its seed oil. The control Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60) in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha that will help reduce public concerns for environmental issues surrounding genetically modified plants.

Conclusion

In this study we produced seed-specific JcFAD2-1 RNA interference transgenic Jatropha without a selectable marker. We successfully increased the proportion of oleic acid versus linoleic in Jatropha through genetic engineering, enhancing the quality of its oil.  相似文献   

9.
以红松籽仁为原料,以无水乙醇为提取溶剂,优化高速匀质-微波辅助提取红松籽油的工艺,考察了匀质速度、匀质时间、液料比、微波温度、微波功率及微波时间对红松籽油提取率的影响,最终确定了红松籽油最佳提取条件为:匀质速度12 000 r·min-1,匀质时间120 s,液料比20 mL·g-1,微波温度60℃,微波功率700 W,微波时间50 min。在上述条件下,红松籽油最优提取率可达60.3%。利用GC-MS对得到的红松籽油的脂肪酸成分进行了分析,其主要成分为棕榈酸、皮诺敛酸、亚油酸、反-13-十八碳烯酸、顺-13-十八碳烯酸、硬脂酸,不饱和脂肪酸含量高达85.55%,其中松籽油所含有的特异性不饱和脂肪酸-皮诺敛酸含量可达13.65%。此外,对该工艺提取得到的红松籽油的抗氧化活性及理化性质进行了评估,发现红松籽油清除DPPH自由基能力强,其IC50值为0.095 4 g·mL-1。此外,红松籽油过氧化值和酸值较低,碘值较高,表明红松籽油是一种品质优良的天然油脂。  相似文献   

10.
东京野茉莉种子油营养成分研究   总被引:13,自引:0,他引:13  
对东京野茉莉种子的营养成分进行分析,结果表明,其种子含有丰富的营养物质:脂肪油、矿质元素,维生素等,其脂肪油中人体必需的油酸和亚油酸含量达85.4%,具有开发利用价值。  相似文献   

11.
Sunflower (Helianthus annuus L.) seed oil with high palmitic acid content has enhanced thermo-oxidative stability, which makes it well suited to high-temperature uses. CAS-5 is a sunflower mutant line that accumulates over 25 % palmitic acid in its seed oil, compared to 5–8 % in conventional cultivars. The objective of this study was to investigate the molecular basis of the high-palmitic acid trait in CAS-5 through both candidate gene and QTL mapping approaches. An F2 population derived from the cross between CAS-5 and the conventional line HA-89 was developed. A 3-ketoacyl-ACP synthase II (KASII) locus on a telomeric region of linkage group (LG) 9 of the sunflower genetic map was found to co-segregate with palmitic acid content in this population. The KASII locus explained the vast majority of the phenotypic variation (98 %) of the trait. Two minor QTL affecting palmitic acid content were also found on the lower half of LG 9 and on LG 17. Additionally, QTL associated with other major fatty acids (stearic, oleic, and linoleic acid) were identified on LG 1, 6, and 10. This result may reflect untapped genetic variation that could exist among sunflower cultivars for genes determining fatty acid composition. In addition to demonstrating the major role of a KASII locus in the accumulation of high levels of palmitic acid in CAS-5 seeds, this study stressed the importance of characterizing genes with minor effects on fatty acid profile in order to establish optimal breeding strategies for modifying fatty acid composition in sunflower seed oil.  相似文献   

12.
Fatty acid composition and stability of vegetable oils have taken more attention as an essential source of biologically active compounds in a good balanced diet. The purpose of the study was to determine peroxide value, free fatty acids, unsaponifiable matter, total carotenoid content, iodine value and fatty acid composition of sunflower, rapeseed, mustard, peanut and olive oils. Rapeseed and peanut oils had the highest peroxide values, while sunflower oil had the lowest peroxide values. The free fatty acid value of the tested oils varied between 0.43 and 1.36% oleic. The peanut oil had the highest free acid value and the mustard oil had the lowest one. Total carotenoid contents of mustard and rape seed oil were higher than those of the other oils tested. Palmitic acid (C16:0), oleic acid (C18:1) and stearic acid (C18:0) were the common main fatty acid components of the vegetable oils tested. Followed by linoleic acid, the amount of oleic acid was the highest among other fatty acid components. Mustard oil had the highest erucic acid (C22:1) with the amount of 11.38%, indicating that it cannot be used for human consumption. Among the oils investigated, sunflower and mustard oils were more stable than rapeseed, peanut and olive oils.  相似文献   

13.
Jatropha curcas was treated by soil drench paclobutrazol (PBZ) (0, 2, and 3 g m?1 of canopy diameter) and foliar spray PBZ (0, 500, 800, and 1,200 ppm). The results showed that PBZ treatments greatly retarded vegetative growth and improved reproductive growth. The lengths of new branches were greatly decreased, whereas the number of fruits per inflorescence, fruit-bearing branches per tree, and total fruit load per tree were increased. Only the 2-g soil drench and the 1,200-ppm foliar PBZ spray significantly increased fruit load. The 2-g soil drench PBZ treatment resulted in a decrease in seed S and Cu contents of J. curcas, whereas Mn and B were greatly or moderately increased. A higher dose (3-g soil drench PBZ) reversed the improvement in reproductive growth and alleviated the negative effects on element contents in seeds compared with the 2-g soil drench PBZ. Finally, soil drench PBZ treatments significantly improved seed oil content and oil quality by reducing the oil acid value, increasing stearic acid and oleic acid contents, and reducing palmitic acid and linoleic acid content. The optimum drench dose was below 2 g m?1 of canopy diameter. The optimum foliar spray concentration of PBZ was not determined in this study but our results suggest that it is higher than 1,200 ppm.  相似文献   

14.
Sunflower is a major oil seed crop worldwide, and it is also an important crop in Mediterranean areas where salinity is an increasing problem. In this paper, the effect of saline irrigation water on seed yield and quality of sunflower was evaluated. A pot experiment was carried out over two crop seasons on two hybrids – a standard one (Carlos) and a high oleic one (Tenor) – submitted to five salinity levels of irrigation water (0.6, 3, 6, 9 and 12 dS m?1). Soil salinity was monitored over the entire crop cycle, and leaf ion content was determined at maturity. Tenor showed higher Na+ and Mg2+ content but lower K+ values. No difference between the two hybrids was observed for Cl? content. A progressive increase in leaf Na+, K+ and Cl? contents and Na+/K+ ratio with increasing salinity level was observed. Seed weight per head, 1000 achene weight, number of seeds per plant and oil yield significantly decreased under salt stress in both hybrids. The percent seed yield decrease was higher per unit increase in electrical conductivity of irrigation water, ECw (8%), than per unit increase in electrical conductivity of saturated‐soil extracts, ECe (5%). Concerning oil fatty acid composition, the main significant difference as result of salt stress was a progressive increase in oleic acid content, from 82.2% to 86.7% for Tenor and from 21.8% to 27.3% for Carlos, which was consistent with a decrease in linoleic acid content, from 5.9% to 3% for Tenor and from 66% to 61.3% for Carlos. These results confirm the possible inhibition of oleate desaturase under salt stress.  相似文献   

15.
Two wheat cultivars, HF9703 (drought tolerant) and SN215953 (drought sensitive) were used to examine the effects of glycinebetaine (GB, 100 mM) on lipid composition and function of thylakoid membranes under drought stress. GB application mitigated negative effect of drought on Ca2+-ATPase and Hill reaction activities, chlorophyll content, gas exchange and photosynthesis. These positive effects of GB application maybe, in part, correlated with improving the lipid composition of the thylakoid membranes.  相似文献   

16.
High-density cropping of soybeans results in considerable mutual shading. Consequently, pods mature under a range of light conditions, with those lower in the canopy exposed to drastically altered spectral quality as well as lower irradiance. The influence of spectral quality on reproductive development and seed quality was investigated in soybeans raised to physiological maturity under either broad spectrum or blue-deficient light sources. The absence of blue light had a large influence on vegetative morphology, but the timing of reproductive events was not affected. Total seed yield per plant, dry matter per seed, per cent protein and per cent oil were similar for all treatments. However, seeds harvested from plants matured under broad spectrum illumination contained high levels of oleic acid (18:1) and low linoleic acid (18:2) compared to seeds from plants grown under blue-deficient conditions. In addition to the spectral quality effect, there was a smaller effect of pod position. Seeds from pods lower in the canopy contained less 18:1 and more 18:2 than seeds that matured closer to the top of the canopy. Considering both spectral quality and pod position, the ratio of 18:1 to 18:2 varied four-fold between 0·35 and 1·43, indicative of a possible photoregulatory step in fatty acid desaturation. The spectral effects are consistent with the participation of a photomorphogenetic photoreceptor in the control of fatty acid metabolism during seed maturation and triglyceride accumulation.  相似文献   

17.
滇南红厚壳种子油的脂肪酸成分   总被引:25,自引:0,他引:25  
应用GC-MS联用技术对云南省西双版纳产的滇南红厚壳(Calophyllumpolyanthum)种子油的脂肪酸成分进行分析.检出12种脂肪酸成分,占总量的99.39%,主要是亚油酸(38.75%),棕榈酸(22.42%),油酸(22.11%)和硬脂酸(9.81%).  相似文献   

18.
greenhouse experiment with factorial arrangement based on randomized complete block design with four replications was conducted in 2015 to evaluate the effects of salicylic acid (SA) (1 mM) and jasmonic acid (JA) (0.5 mM) on oil accumulation and fatty acid composition of soybean oil (Glycine max L.) under salt stress (Non-saline, 4, 7, and 10 dS/m NaCl). Oil percentage of soybean seeds declined, while oil content per seed enhanced with increasing seed filling duration. Foliar application of SA improved oil content per soybean seed at different stages of development under all salinity levels. Although JA treatment enhanced seed oil percentage, oil yield of these plants decreased as a result of reduction in seed yield per plant. In contrast, the highest oil yield was recorded for SA treated plants, due to higher seed yield. Salinity had no significant effects on percentage of palmitic acid and stearic acid, but treatment with JA significantly reduced stearic acid percentage. Oleic acid content of seeds increased, but percentages of linoleic acid, linolenic acid and unsaturation index (UI) of soybean oil decreased with increasing salinity. Foliar application of SA and JA improved oil quality of soybean seeds by reducing oleic acid and enhancing linoleic acid, linolenic acid contents and UI. Exogenous application of SA had the most beneficial effects on soybean seeds due to enhancing oil yield and quality under saline and non-saline conditions.  相似文献   

19.
以盆栽4年生的苹果砧木湖北海棠(Malus hupehensis)为试材,叶面喷施100 mmol·L-1的甜菜碱,研究外源甜菜碱对干旱胁迫下湖北海棠叶片超微弱发光(UWL)、丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢(H2O2)、脯氨酸(Pro)及甜菜碱(GB)含量的影响.结果表明,轻度干旱胁迫下,叶片UWL强度提高,但随着干旱胁迫程度的加重而下降,至严重干旱胁迫时UWL明显低于正常供水处理;H2O2、MDA含量随干旱胁迫加重而升高;SOD和POD活性随胁迫加重而升高,但至重度干旱时下降.与单独干旱处理相比,叶片喷施甜菜碱显著提高了轻度和中度干旱胁迫叶片的UWL(分别提高35.27%和43.95%)、SOD和POD活性,降低了H2O2和MDA含量;促进了Pro和GB的积累.表明甜菜碱及通过甜菜碱诱导的脯氨酸积累,能够提高干旱胁迫下叶片的抗氧化能力,减轻过氧化损伤,对叶片细胞起到保护作用.  相似文献   

20.
赵晓菊  秦薇  陈华峰 《植物研究》2017,37(1):155-160
高含量不饱和脂肪酸,特别是高含量亚麻酸是牡丹籽油品质的主要体现,但到目前为止,在凤丹传统栽培区(铜矿区)土壤铜含量是否影响牡丹籽油品质并没有被调查。本研究通过调查安徽省凤凰山-丫山30个凤丹(Paeonia ostii)栽培区土壤Cu元素含量和凤丹籽油组成,显示凤丹栽培区土壤铜含量为18.98~298.82 mg·kg-1,变异系数为83.06%;凤丹籽油中棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸5种主要脂肪酸含量分别为5.62%、1.89%、24.59%、29.76%、38.13%,变异系数在5.66~9.72,其中亚油酸变异系数最高为9.72;土壤和叶片中Cu含量与亚油酸和不饱和脂肪酸含量均存在明显的负相关性,与亚麻酸含量没有显著相关性;土壤和叶片中Cu含量呈显著正相关,r=0.778。以上表明以油用为目的的凤丹栽培应该避免土壤中铜含量过高影响牡丹籽油品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号