首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Stability of nucleosomes in native and reconstituted chromatins.   总被引:16,自引:19,他引:16       下载免费PDF全文
The stability of nucleosomes of SV40 minichromosomes extracted from infected cells or reconstituted by association of SV40 DNA and the four histones H2A, H2B, H3 and H4 was studied as a function of the ionic strength. As a measure of the stability of the nucleosome, we followed the disappearance of the nucleosomes from the original chromatin and their appearance on a "competing" DNA. We show here that the DNA and the histone components of the nucleosomes do not apprecially dissociate below 800 mM NaCl. At 800 mM and above, the histone moiety of the nucleosomes can dissociate from the DNA and efficiently participate to the formation of nucleosomes on a "competing" DNA.  相似文献   

2.
Lymphoblastoid cell lines were established after transformation by Epstein-Barr virus of peripheral lymphocytes from xeroderma pigmentosum (XP) patients and normal donors. These lines expressed B-lymphocyte characteristics. Typical characteristics related to XP of these cell lines were not altered by transformation. Extracts of these cells catalyzed release of uracil (Ura) and 3-methyladenine (3MeAde) from Ura-containing DNA (Ura-DNA) and methylated DNA (Me-DNA), respectively. These two activities, Ura-DNA glycosylase and 3MeAde-DNA glycosylase, differed in heat stability. Extracts released Ura more rapidly and 3MeAde more slowly from a single-stranded DNA than from a double-stranded DNA. On incubation with reconstituted chromatins prepared from Ura-DNA and Me-DNA, respectively, with calf thymus chromosomal protein, cell extracts released all the Ura but about half the 3MeAde residues. The activity levels of these two enzymes of XP cells were similar to those of normal cells.  相似文献   

3.
In vitro methylation of Bluescribe plasmid DNA (pBS) with human placental DNA methyltransferase to 6% 5-methylcytosine (mC) reduced transformation efficiencies in rglB+ host strains C600 and DS410 by almost 2 orders of magnitude. By contrast, the rglB- derivative of DS410 showed no reduction in transformation efficiency with methylation while the rglB- derivative of C600 was partially tolerant to methylation. Further, we show that the 1.8 kilobase (kb) and 1.2 kb KpnI fragments derived from the human L1 repeat have respectively 18.3% and 2.3% mC in vivo. Using these hyper- and hypo-methylated genomic segments ligated into the pBS plasmid, transformants with the highly methylated 1.8 kb L1 insert were recovered at 17 to 40 fold higher frequency with the rglB- host strains than with the rglB+ hosts. In addition, recombinant phage (lambda 2001) containing inserts of plant genomic DNA with 26.7% mC (from Petunia hybrida) when plated on rglB- hosts gave titres up to 222 times higher than on the rglB+ strains.  相似文献   

4.
Oxidative damage to mitochondrial DNA has been implicated in human degenerative diseases and aging. Although removal of oxidative lesions from mitochondrial DNA occurs, the responsible DNA repair enzymes are poorly understood. By expressing the epitope-tagged proteins in COS-7 cells, we examined subcellular localizations of gene products of human DNA glycosylases: hOGG1, hMYH and hNTH1. A gene encoding for hOGG1 which excises 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA generates four isoforms by alternative splicing (types 1a, 1b, 1c and 2). Three tagged isoforms (types 1b, 1c and 2) were localized in the mitochondria. Type 1a protein, which exclusively contains a putative nuclear localization signal, was sorted to the nucleus and lesser amount to the mitochondria. hMYH, a human homolog gene product of Escherichia coli mutY was mainly transported into the mitochondria. hNTH1 protein excising several pyrimidine lesions was transported into both the nucleus and mitochondria. In contrast to the three DNA glycosylases, translocation of the human major AP endonuclease (hAPE) into the mitochondria was hardly observed in COS-7 cells. These results suggest that the previously observed removal of oxidative base lesions in mitochondrial DNA is initiated by the above DNA glycosylases.  相似文献   

5.
《Free radical research》2013,47(4):460-478
Abstract

This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations.  相似文献   

6.
This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations.  相似文献   

7.
Oxidative damage to DNA generates aberrant guanine bases such as 2,6-diamino-4-hydroxy-formamido-pyrimidine (Fapy) and 7,8-dihydro-8-oxoguanine (8-oxoG). Although synthetic oligonucleotides containing a single 8-oxoG have been widely used to study enzymatic processing of this lesion, the synthesis of oligonucleotides containing Fapy as a unique lesion has not been achieved to date. In this study, an oligonucleotide containing a single 2,6-diamino-4-hydroxy-5-(N-methyl)formamido-pyrimidine (me-Fapy, a methylated derivative of Fapy) was prepared by a DNA polymerase reaction and the subsequent alkali treatment. The repair activity of Fpg and hOGG1 proteins were compared using oligonucleotide substrates containing me-Fapy and 8-oxoG.  相似文献   

8.
Structures and functions of DNA glycosylases   总被引:18,自引:0,他引:18  
K Sakumi  M Sekiguchi 《Mutation research》1990,236(2-3):161-172
  相似文献   

9.
High metabolic activity and low levels of antioxidant enzymes make neurons particularly prone to damage by reactive oxygen species. Thus, repair of oxidative DNA damage is essential for normal brain function. Base excision repair is the major pathway for repair of oxidative DNA damage, and is initiated by DNA glycosylases recognizing and removing the damaged base. In mammalian cells at least five different DNA glycosylases with overlapping substrate specificity, NEIL1, NEIL2, NEIL3, OGG1 and NTH1, remove oxidative DNA base lesions. Here we report mRNA expression and distribution of these five DNA glycosylases in human and rodent brains using in situ hybridization and Northern blotting supported by glycosylase activity assays. NEIL1, NEIL2, OGG1 and NTH1 showed widespread expression at all ages. In situ hybridization studies in mouse brain showed that expression of mNeil1 increased with age. In newborn mouse brain, mNeil3 revealed a discrete expression pattern in brain regions known to harbour stem cell populations, i.e., the subventricular zone, the rostral migratory stream, and the hilar region of the hippocampal formation. Expression of mNeil3 decreased with age, and in old mice brains could be detected only in layer V of neocortex. MNth1 was constitutively expressed during lifespan. In Northern blots, mOgg1 expression showed a transient decrease followed by an increase after 8 weeks of age. Assays for faPy DNA glycosylase activity revealed increased activity level with age in all brain regions analyzed. The widespread but differential expression of the DNA glycosylases recognizing oxidative base lesions suggests distinct and age dependent roles of these enzymes in genome maintenance in brain. The distribution of mNeil3 is particularly intriguing and points to a specific role of this enzyme in stem cell differentiation.  相似文献   

10.
Degradation of uracil-containing DNA by Bacillus subtilis extracts and its inhibition after infection by the uracil-containing DNA phage PBS2 have been investigated to resolve differences between the published reports of Tomita and Takahashi (1975) and Friedberg et al. (1975, 1976). The product of hydrolysis of PBS2 DNA, tritium labeled in its uracil and cytosine residues, is solely uracil and not deoxyuridine. The degrading activity is completely inhibited within 7 min after PBS2 infection, before any other known PBS2-induced protein is detectable. The production of the PBS2 inhibitor (a small, heat-stable protein) continues until 10 to 20 min postinfection.  相似文献   

11.
Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA.A significant triumph in biochemistry over the last 20 years was the ability to isolate human DNA repair enzymes and study their in vitro properties using defined DNA substrates containing damaged sites. Typically, these studies have been performed using dilute conditions, where the concentration of the enzyme, DNA and buffer components were low compared to the concentration of water. Although a wealth of insights into the thermodynamic, kinetic and structural properties of enzymes have resulted from such approaches (17), DNA repair enzymes act in a crowded cellular environment with quite different physical properties (8,9). Thus, an open question is how the complex intracellular milieu affects the ability of enzymes to locate and repair damage sites embedded in a large polymeric DNA substrate.The human intracellular environment has numerous physical properties that could dramatically affect enzyme activity. These include high inorganic ion and metabolite concentrations (10,11), lower dielectric properties (1214), higher bulk viscosity (15,16), and the presence of high concentrations of macromolecules which consume available volume (‘molecular crowding’) (17,18). Indeed, the concentration of macromolecules in human cells is an astounding ∼100–300 mg/ml (9,19), which means that 10–40% of the total cellular volume is consumed by large molecules (often called the excluded volume). Taken together,­ these parameters could affect association of an enzyme with its target in complex ways. For instance, high ion concentrations are expected to shield electrostatic interactions between an enzyme and its highly charged DNA substrate (10,20,21), while a lower dielectric constant could have an opposite effect. Increases in macroscopic viscosity will slow the translational movement of macromolecules and due to entropic effects, crowded environments will push macromolecular association when the complex consumes a smaller volume than the free component species (9,22,23).Although volume exclusion largely explains the effects of crowded environments on binding equilibria, crowding has been reported to have a surprisingly small effect on the diffusion-controlled association kinetics of macromolecules (24). Indeed, it has been observed that some diffusion-controlled association reactions occur at nearly the same rates in crowded solutions and in cells as they do in dilute solution (24,25). These kinetic effects are counterintuitive, but can be understood by considering that macromolecular crowders alter the macroscopic viscosity and available volume in crowded solutions, but do not change the microscopic viscosity (26,27). Thus, over short nanometer distances, the rotational and translational diffusion of proteins is not greatly affected by crowding because the protein only feels the microscopic viscosity of the solvent that is present in the spaces between the larger crowding molecules (28). Over larger distances, hard sphere repulsion between the protein and crowding molecules increases the effective viscosity and slows translational diffusion (8,28,29). When two binding partners approach one another, they are captured within a low viscosity (high mobility) cage created by the larger crowding molecules, which increases the probability for a productive encounter event. Surprisingly, the capture of two binding partners within a high mobility cage can in some cases offset all of the negative effects of high viscosity on the overall association rate (29).The above considerations raise the interesting question of what effect molecular crowding has on enzyme association with DNA, and in particular, the property of facilitated diffusion along a DNA chain? Facilitated diffusion on the DNA chain (‘translocation’) is a distinct process that involves transient states of an enzyme and DNA that are not directly observable in equilibrium binding, steady-state or rapid kinetic measurements (14,30). Here, we measure the effect of inert crowding agents on the probability that the DNA repair enzymes uracil and 8-oxguanine DNA repair glycosylase will successfully translocate between two damaged sites in a DNA chain. We find that crowding increases the likelihood that each enzyme will successfully translocate between their respective target sites without dissociation to bulk solution and also increases the average translocation distance. For both enzymes, crowding biases the damage search process toward a chain tracking search mode rather than a 3D search mode. Such a crowder-induced transition in the search mode could significantly impact the effectiveness of the damage search in a crowded nuclear environment. These enzymes represent two of the largest superfamilies of glycosylases and their similar behavior in these studies suggests that the findings will be general for other related glycosylases.  相似文献   

12.
F Li  S L Liu  J I Mullins 《BioTechniques》1999,27(4):734-738
DpnI can cleave fully methylated parental DNA while leaving hemi-methylated DNA intact. Based on this observation, we developed a rapid site-directed mutagenesis method using uracil-containing, double-stranded (ds)DNA templates and DpnI digestion. A 38% mutation efficiency was achieved by DpnI treatment of the mutagenic strand-extension reaction, and it increased to 70%-91% when uracil-containing dsDNA templates were used. This method compares favorably to the most efficient current methods, but is simpler and does not require the use of single-stranded templates or phage vectors.  相似文献   

13.
M Saparbaev  K Kleibl    J Laval 《Nucleic acids research》1995,23(18):3750-3755
The human carcinogen vinyl chloride is metabolized in the liver to reactive intermediates which generate various ethenobases in DNA. It has been reported that 1,N6-ethenoadenine (epsilon A) is excised by a DNA glycosylase present in human cell extracts, whereas protein extracts from Escherichia coli and yeast were devoid of such an activity. We confirm that the human 3-methyladenine-DNA glycosylase (ANPG protein) excises epsilon A residues. This finding was extended to the rat (ADPG protein). We show, at variance with the previous report, that pure E.coli 3-methyladenine-DNA glycosylase II (AlkA protein) as well as its yeast counterpart, the MAG protein, excise epsilon A from double stranded oligodeoxynucleotides that contain a single epsilon A. Both enzymes act as DNA glycosylases. The full length and the truncated human (ANPG 70 and 40 proteins, respectively) and the rat (ADPG protein) 3-methyladenine-DNA glycosylases activities towards epsilon A are 2-3 orders of magnitude more efficient than the E.coli or yeast enzyme for the removal of epsilon A. The Km of the various proteins were measured. They are 24, 200 and 800 nM for the ANPG, MAG and AlkA proteins respectively. These three proteins efficiently cleave duplex oligonucleotides containing epsilon A positioned opposite T, G, C or epsilon A. However the MAG protein excises A opposite cytosine much faster than opposite thymine, guanine or adenine.  相似文献   

14.
Sidorenko VS  Zharkov DO 《Biochemistry》2008,47(34):8970-8976
Many enzymes acting on specific rare lesions in DNA are suggested to search for their targets by facilitated one-dimensional diffusion. We have used a recently developed correlated cleavage assay to investigate whether this mechanism operates for Fpg and OGG1, two structurally unrelated DNA glycosylases that excise an important oxidative lesion, 7,8-dihydro-8-oxoguanine (8-oxoG), from DNA. Similar to a number of other DNA glycosylases or restriction endonucleases, Fpg and OGG1 processively excised 8-oxoG from pairs with cytosine at low salt concentrations, indicating that the lesion search likely proceeds by one-dimensional diffusion. At high salt concentrations, both enzymes switched to a distributive mode of lesion search. Correlated cleavage of abasic site-containing substrates proceeded in the same manner as cleavage of 8-oxoG. Interestingly, both Fpg and especially OGG1 demonstrated higher processivity if the substrate contained 8-oxoG.A pairs, against which these enzyme discriminate. Introduction of a nick into the substrate DNA did not decrease the extent of correlated cleavage, suggesting that the search probably involves hopping between adjacent positions on DNA rather than sliding along DNA. This was further supported by the observation that mutant forms of Fpg (Fpg-F110A and Fpg-F110W) with different sizes of the side chain of the amino acid residue inserted into DNA during scanning were both less processive than the wild-type enzyme. In conclusion, processive cleavage by Fpg and OGG1 does not correlate with their substrate specificity and under nearly physiological salt conditions may be replaced with the distributive mode of action.  相似文献   

15.
16.
DNA glycosylases are enzymes that initiate base excision repair, which removes damaged bases from cell DNA. Recent data demonstrate that some genetic variants of two human DNA glycosylases, MUTYH and OGG1, are associated with an increased risk of cancer. In addition, various DNA glycosylases are involved in protection from some neurodegenerative diseases, immune disorders, and virus infections. On the other hand, DNA glycosylases of pathogenic microorganisms help them to evade the host defense mechanisms. Thus, DNA glycosylases are considered to be both potential therapeutic agents and drug targets.  相似文献   

17.
When Bacillus subtilis is infected by the uracil-containing DNA phage PBS2, the parental DNA labeled with radioactive uracil and cytosine remains acid insoluble. If the synthesis of the phage-induced uracil-DNA N-glycosidase inhibitor is prevented, the parental DNA is completely degraded to acid-soluble products beginning at about 6 min after infection. The host N-glycosidase probably initiates the degradation pathway, with nucleases being responsible for the remaining degradation of the DNA.  相似文献   

18.
19.
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.  相似文献   

20.
Results of investigations of E. coli DNA glycosylases using pre-steady-state kinetics are considered. Special attention is given to the connection of conformational changes in the interacting biomolecules with kinetic mechanisms of the enzymatic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号