首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
A new microheterogeneous non-aqueous medium for enzymatic reactions, based on reversed micelles of a polymeric surfactant, was suggested. The surfactant termed CEPEI, was synthesized by successive alkylation of poly(ethyleneimine) with cetyl bromide and ethyl bromide and was found to be able to solubilize considerable amounts of water in benzene/n-butanol mixtures. The hydrodynamic radius of polymeric-reversed micelles was estimated to be in the range 22-51 nm, depending on the water content of the system, as determined by means of the quasi-elastic laser-light scattering. Polymeric reversed micelles were capable of solubilizing enzymes (alpha-chymotrypsin and laccase) in nonpolar solvents with retention of catalytic activity. Due to the strong buffering properties of CEPEI over a wide pH range, it could maintain any adjusted pH inside hydrated reversed micelles. It was found that catalytic behavior of enzymes entrapped in polymeric reversed micelles was rather insensitive to the pH of the buffer solution introduced into the system as an aqueous component, but determined mostly by acid-base properties of the polymeric surfactant itself. Both catalytic activity and stability of entrapped alpha-chymotrypsin and laccase were found to increase with increasing water content of the system. Under certain conditions, the entrapment of alpha-chymotrypsin into CEPEI reversed micelles resulted in a considerable increase in catalytic activity and stability as compared to aqueous solution. CEPEI reversed micelles were demonstrated to be promising enzyme carriers for use in membrane reactors. Owing to the large dimensions of CEPEI reversed micelles, they are effectively kept back by a semipermeable membrane, thus allowing an easy separation of the reaction product and convenient recovery of the enzyme.  相似文献   

2.
The chloroperoxidase from the mold Caldariomyces fumago was entrapped into reversed micelles composed of aqueous buffer, cetyltrimethylammonium chloride or bromide, pentanol and octane. The surfactant serves a dual function: i) it stabilizes the reversed micelle, and ii) the halide counter ion is used as a substrate for the enzyme. 2-Monochlorodimedon and 1,3-dihydroxybenzene were halogenated with this system, giving their 2-halo and 4-halo derivatives, respectively. The reaction rates were about twice as high as in aqueous media. Enzyme activity was maximal at high water content of the micelles and at relatively low pentanol concentration. The enzyme was inactivated by high concentrations of hydrogen peroxide.  相似文献   

3.
The chloroperoxidase from the mold Caldariomyces fumago was entrapped into reversed micelles composed of aqueous buffer, cetyltrimethylammonium chloride or bromide, pentanol and octane. The surfactant serves a dual function: i) it stabilizes the reversed micelle, and ii) the halide counter ion is used as a substrate for the enzyme. 2-Monochlorodimedon and 1,3-dihydroxybenzene were halogenated with this system, giving their 2-halo and 4-halo derivatives, respectively. The reaction rates were about twice as high as in aqueous media. Enzyme activity was maximal at high water content of the micelles and at relatively low pentanol concentration. The enzyme was inactivated by high concentrations of hydrogen peroxide.  相似文献   

4.
Spectral and catalytic parameters of peroxidase solubilized in the aerosol OT-water-octane system have been studied. The spectrum of peroxidase solubilized in octane with AOT reversed micelles, a degree of surfactant hydration being above 12, is actually identical to that of the enzyme aqueous solution. On the other hand, significant spectral changes have been detected when transferring the enzyme from water to the reversed micelle medium at low degrees of surfactant hydration, precisely [H2O]/[AOT] less than 12. The reversed micelle-entrapped peroxidase catalyses the oxidation of pyrogallol with hydrogen peroxide much more actively (at [H2O]/[surfactant] approximately 13) than that in aqueous solution. The entrapment of peroxidase into surfactant reversed micelles increases precisely the catalytic constant of the reaction, i.e. the virtual reactivity of the enzyme increases ten and hundred times depending on degrees of surfactant hydration and concentration. The systems of reversed micelles may be considered as models of biomembranes. Our findings hence show that enzymes in vivo can be much more catalytically active then it appears possible to reveal in conventional experiments in vitro in aqueous solutions.  相似文献   

5.
Activation of lignin peroxidase (LIP) in an organic solvent by reversed micelles was investigated. Bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT) was used as a surfactant to form a reversed micelle. Lyophilized LIP from an optimized aqueous solution exhibited no enzymatic activity in any organic solvents examined in this study; however, LIP was catalytically active by being entrapped in the AOT reversed micellar solution. LIP activity in the reversed micelle was enhanced by optimizing either the preparation or the operation conditions, such as water content and pH in water pools of the reversed micelle and the reaction temperature. Stable activity was obtained in isooctane because of the stability of the reversed micelle. The optimal pH was 5 in the reversed micellar system, which shifted from pH 3 in the aqueous solution. The degradation reaction of several environmental pollutants was attempted using LIP hosted in the AOT reversed micelle. Degradation achieved after a 1-h reaction reached 81%, 50%, and 22% for p-nonylphenol, bisphenol A, and 2,4-dichlorophenol, respectively. This is the first report on the utilization of LIP in organic media.  相似文献   

6.
Catalysis by laccase from Coriolus uersicolor solubilized in the ternary systems of surfactant/water/organic solvent type, namely, Aerosol OT/water/octane, Brij 56/water/cyclohexane and egg lecithin/water/octane + pentanol + methanol mixture, has been studied. The laccase activity is found to depend, in principle, not only on the water/surfactant molar ratio, but on the surfactant concentration (with its hydration degree being constant) as well. The following inferences should be emphasized. Firstly, in all the systems under study, the catalytic activity (kcat) of laccase entrapped into surfactant reversed micelles increases more than 50 times (when the surfactant concentration is extrapolated to zero) compared with the kcat value in aqueous solution. Secondly, the catalytic activity (kcat) of laccase entrapped in hydrated Aerosol OT aggregates, having lamellar, reversed cylindrical (hexagonal) and reversed micellar structure, depends greatly on the aggregate type. In other words, the phase transitions, i.e. an alteration in the packing of hydrated Aerosol OT molecules, evokes a sharp reversible change in the enzymatic activity. Thirdly, in the same phase, the catalytic activity of the solubilized enzyme depends on the linear dimensions of water cavities inside the surfactant aggregates (i.e. on the water content in the system under study). All these effects, regulating enzymatic activity, are probably caused by an alteration of the conformational mobility of laccase molecules incorporated into the inner polar cavities inside the surfactant aggregates.  相似文献   

7.
Catalysis by laccase from Coriolus uersicolor solubilized in the ternary systems of surfactant/water/organic solvent type, namely, Aerosol OT/water/octane, Brij 56/water/cyclohexane and egg lecithin/water/octane + pentanol + methanol mixture, has been studied. The laccase activity is found to depend, in principle, not only on the water/surfactant molar ratio, but on the surfactant concentration (with its hydration degree being constant) as well. The following inferences should be emphasized. Firstly, in all the systems under study, the catalytic activity (kcat) of laccase entrapped into surfactant reversed micelles increases more than 50 times (when the surfactant concentration is extrapolated to zero) compared with the kcat value in aqueous solution. Secondly, the catalytic activity (kcat) of laccase entrapped in hydrated Aerosol OT aggregates, having lamellar, reversed cylindrical (hexagonal) and reversed micellar structure, depends greatly on the aggregate type. In other words, the phase transitions, i.e. an alteration in the packing of hydrated Aerosol OT molecules, evokes a sharp reversible change in the enzymatic activity. Thirdly, in the same phase, the catalytic activity of the solubilized enzyme depends on the linear dimensions of water cavities inside the surfactant aggregates (i.e. on the water content in the system under study). All these effects, regulating enzymatic activity, are probably caused by an alteration of the conformational mobility of laccase molecules incorporated into the inner polar cavities inside the surfactant aggregates.  相似文献   

8.
Tyrosinase activity in reversed micelles   总被引:1,自引:0,他引:1  
The hydroxylase and oxidase activities of mushroom tyrosinase were studied in both sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane and cetyltrimethylammonium bromide (CTAB)/hexane/chloroform reversed micelles. The enzyme presented its highest activity when the water to surfactant molar ratio (W 0) was 20 for both systems. When entrapped in the AOT reversed micelles, the enzyme activity decreased with the increase in AOT concentration at a constant W 0, and the enzyme not only presented a higher reaction rate related to its oxidase activity but also a shorter lag period related to its hydroxylase activity. The relation between water activity and W 0 revealed that enzyme activity in reversed micelles was more related to the size of the micelles which was determined by W 0 and less to the water activity. Tyrosinase in CTAB reversed micelles showed potential for the analysis of o-diphenols.  相似文献   

9.
The physical phenomenon of clathrate hydrate formation in protein-containing reversed micelles is described. Hydrate formation in reversed micelles is a method of adjusting the water to surfactant molar ratio, wo, which influences micellar size. Lipase and alpha-chymotrypsin encapsulated in large reversed micelles of high wo show significant enhancements in activity when the micelle size is reduced through hydrate formation. Alternate methods of micelle size adjustments also show enhancements in activity. The implications for improving the activity of such encapsulated enzymes recovered from fermentation media through phase transfer into reversed micelles are discussed.  相似文献   

10.
Possible biotechnological applications of extreme halophilic enzymes are strongly determined by their high salt requirement of around 4 M NaCl. Consequently, the use of these in organic media seemed to be unlikely. However, we have succeeded in dissolving a halophilic enzyme, p-nitrophenylphosphate phosphatase from the archaeon Halobacterium salinarum, in an organic medium by creating a reverse micellar system with very low salt concentration. The enzyme retained its catalytic properties in reversed micelles made with an anionic surfactant (dioctyl sodium sulphosuccinate) or with a cationic surfactant (hexadecyltrimethylammonium bromide) in cyclohexane plus 1-butanol as co-surfactant. The dependence of the rate of hydrolysis of p-nitrophenylphosphate phosphate on the molar water/surfactant ratio (w(0) value) showed a bell-shaped curve for each surfactant system. Kinetic parameters were determined in each system. The enzymatic reaction appeared to follow Michaelis-Menten kinetics with the anionic surfactant only. The kinetic behaviour was determined at different concentrations of Mn(2+) in reversed micelles of dioctyl sodium sulphosuccinate as surfactant.  相似文献   

11.
Protein refolding in reversed micelles   总被引:8,自引:0,他引:8  
A novel process has been developed which uses reversed micelles to isolate denatured protein molecules from each other and allows them to refold individually. These reversed micelles are aqueous phase droplets stabilized by the surfactant AOT and suspended in isooctane. By adjusting conditions such that only one protein molecule is present per reversed micelle, it was possible to achieve independent folding without encountering the problem of aggregation due to interactions with neighboring molecules. The feasibility of this process was demonstrated using bovine pancreatic ribonuclease A as a model system. It was shown that denatured and reduced ribonuclease can be transferred from a buffered solution containing guanidine hydrochloride into reversed micelles to a greater extent than native enzyme under the same conditions. The denaturant concentration can then be significantly reduced in the reversed micellar phase, while retaining most of the protein, by means of extractive contacting stages with a denaturant-free aqueous solution. Denatured and reduced ribonuclease will subsequently recover full activity inside reversed micelles within 24 h upon addition of a mixture of reduced and oxidized glutathione to reoxidize disulfide bonds. Extraction of this refolded enzyme from reversed micelles back into aqueous solution can be accomplished by contacting the reversed micelle phase with a high ionic strength (1.0M KCl) aqueous solution containing ethyl acetate.  相似文献   

12.
The activities of horseradish peroxidase (HRP) and lactoperoxidase (LPO) entrapped in reverse micelles of Igepal CO-520 in cyclohexane were studied. When the molar ratio of water to surfactant, w 0 was ≥13, the activity of HRP encapsulated in the water pool of the reverse micelle was comparable with that measured in buffer. For LPO, however, lower activity was observed after its incorporation into the same system.

The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.

The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C.  相似文献   

13.
Using ultracentrifugation, the systems of reversed micelles of aerosol OT in octane containing solubilized protein (alpha-chymotrypsin, lysozyme, trypsin, egg albumin, alcohol dehydrogenase from horse liver and gamma-globulin) were studied. The changes in the sedimentation coefficients of reversed micelles during incorporation of the protein are correlated (within a wide range of experimental conditions, e. g. degree of surfactant hydration or protein concentration) exclusively with the molecular weight of the solubilized protein. The simplest solubilization model, according to which the protein molecule is incorporated into the inner cavity of the reversed micelle at the stoichiometric ratio of 1 : 1, which does not affect the external sizes of the reversed micelle, has been proposed. Using alpha-chymotrypsin as an example, the conditions, under which the sedimentation properties of the systems deviate from this model, have been found. These deviations occurred at sufficiently low degrees of the surfactant hydration, when the inner cavity of the reversed micelle is smaller than the effective size of the solubilized protein molecule. In the latter case the protein forms a new micelle of necessary (i. e. larger) size. Since the hydrated micelle can be regarded as an elementary (30-100 A) fragment of biomembranes, the results obtained should be taken into consideration when analyzing the structural organization and functioning of the latter.  相似文献   

14.
The activities of horseradish peroxidase (HRP) and lactoperoxidase (LPO) entrapped in reverse micelles of Igepal CO-520 in cyclohexane were studied. When the molar ratio of water to surfactant, w0 was ≥13, the activity of HRP encapsulated in the water pool of the reverse micelle was comparable with that measured in buffer. For LPO, however, lower activity was observed after its incorporation into the same system.

The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.

The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C.  相似文献   

15.
Enoate reductase (EC 1.3.1.31) can stereospecifically reduce a variety of alpha,beta-unsaturated carboxylates. Its use was extended to apolar media by incorporating the enzyme into a reversed micellar medium. The kinetics of the enzyme in such a medium have been investigated using 2-methylbutenoic acid as substrate and NADH as a cofactor and compared with the reaction rates in aqueous solution. In aqueous solution the enzyme obeys a ping pong mechanism [Bühler et al. (1982) Hoppe-Seyler's Z. Physiol. Chem 363, 609-625]. In 50 mM Hepes pH = 7.0 with ionic strength of 0.05 M the Michaelis constants for NADH and 2-methylbutenoic acid are 20 microM and 6.0 mM respectively. In reversed micelles the kinetics of the reaction (Michaelis constant, maximum velocity as well as inhibitory effects) were markedly different. The rate of the enzymatic reaction of enoate reductase was studied using various concentrations of 2-methylbutenoic acid and various NADH concentrations. In reversed micelles composed of the anionic detergent sodium di(ethylhexyl)sulphosuccinate, the enzymatic reaction deviates substantially from the values in aqueous solution. Using our model (see preceding paper in this issue of the journal), all kinetics could be explained as evolving from enclosure in reversed micelles without any change in the intrinsic rate parameters of the enzyme. So the enzyme itself is unaffected by incorporation in reversed micelles, but the rate of intermicellar exchange as well as the microheterogeneity of the medium, resulting in very high local concentrations of the substrate, are the most important factors altering the reaction pattern. The effect of the composition of the reversed micellar medium was also investigated using either a nonionic or a cationic surfactant. In these solutions too, exchange and microheterogeneity of the medium proved to be the most important parameters influencing the enzymatic reaction. In all reversed micellar solutions inhibition by the enoate was observed at an overall concentration of 0.5-5 mM, implying that a concentration of substrate equal to the Km value in aqueous solution may already cause inhibition in reversed micelles. At this level no inhibition by NADH was observed. The microheterogeneity of the medium also explains this inhibition of the enzyme at relatively low 2-methylbutenoic acid concentrations.  相似文献   

16.
In the system composed of the cationic surfactant TOMAC (10 mM), the nonionic (co)surfactant Rewopal HV5 (2 mM), and octanol (0.1% v/v) in isooctane, reversed micelles are formed upon contact with an aqueous phase containing 50 mM ethylene diamine. alpha-Amylase can be transferred from the aqueous phase into reversed micelles in the pH range 9.5 to 10.5 and re-extracted into a second aqueous phase of different composition. The size of the reversed micelles (as reflected in the water content of the organic phase) can be varied by changes in percentage of octanol, type of counterion in the aqueous phase, or in the number of ethoxylate head groups of the nonionic surfactant. An increase in size results in transfer at lower pH values. Experiments in which the charge density in the reversed micellar interface was changed by incorporation of charged derivatives of the nonionic surfactant, without influencing the water content, revealed that an increased charge density facilitated transfer, resulting in a broader transfer profile. Replacement of TOMAC by other quaternary ammonium surfactants differing in number and length of tails revealed that, of the 14 surfactants tested, only 2 gave appreciable amounts of transfer. The amount of transfer is related to the dynamics of phase separation of the surfactants: those giving a poor phase separation inactivate the enzyme. This inactivation is caused by electrostatic interactions between the charged surfactant head groups and charged groups on the enzyme. Electrostatic interactions are the first step of transfer, and can result in either incorporation in a reversed micelle, or, if reversed micelle formation is slow, in enzyme inactivation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
Sorbitan trioleate (Span 85) modified by Cibacron Blue F-3GA (CB) was prepared and used as an affinity surfactant to formulate a reversed micellar system for Candida rugosa lipase (CRL) solubilization. The system was characterized and evaluated by employing CRL-catalyzed hydrolysis of olive oil as a model reaction. The micellar hydrodynamic radius results reflected, to some extent, the redistribution of surfactant and water after enzyme addition, and the correlation between surfactant formulation, water content (W0), micellar size, and enzyme activity. An adequate modification density of CB was found to be important for the reversed micelles to retain enough hydration capacity and achieve high enzyme activity. Compared with the results in AOT-based reversed micelles, CRL in this micellar system exhibited a different activity behavior versus W0. The optimal pH and temperature of the encapsulated lipase remained unchanged, but the apparent activity was significantly higher than that of the native enzyme in bulk solution. Kinetic studies indicated that the encapsulated lipase in the reversed micelles of CB-formulated Span 85 followed the Michaelis-Menten equation. The Michaelis constant was found to decrease with increasing surfactant concentration, suggesting an increase of the enzyme affinity for the substrate. Stability of the lipase in the reversed micelles was negatively correlated to W0.  相似文献   

18.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

19.
Water-in-oil microemulsion systems have been studied in recent years for a number of applications in protein separation and enzymology. Although it is well established that reversed micelle systems provide an excellent medium for nonaqueous biocatalytic studies, there is still much speculation as to the interaction of the enzyme with the surfactant interface. Polyoxyethylene sorbitan trioleate (Tween 85) is a nonionic surfactant which has some interesting properties for microemulsion formation and protein solubilization. In conjunction with a separate article describing the structural features of Tween 85 reversed micelles in hexane with isopropanol as a cosurfactant, this work describes the activity of an enzyme, organophosphorus hydrolase, for degrading organophosphorus pesticides in this microemulsion system. Ternary phase diagrams were constructed to outline the phase boundaries at different temperatures and isopropanol concentrations, which elucidate the role of the cosurfactant alcohol, as well as some features of micelle structure. Kinetic and stability studies with organophosphorus hydrolase show the effect of enzyme partitioning between the micelle surfactant layer and aqueous core. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
Ester hydrolyses in reversed micelles using lipase   总被引:2,自引:0,他引:2  
Lipases are enzymes which require a favourable reaction system for efficient catalysis of their hydrophobic substrates and reversed micellar environment is one such medium which offers many advantages. Hydrolytic studies of esters of paranitrophenol and glycerol using imidazole and four fungal lipases are studied in AOT/isooctane reversed micelles. The effect of water and surfactant concentration on the hydrolysis of rice bran oil is investigated and the overall potential of the reversed micellar system for hydrolytic reactions is assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号