首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrophobic cavity of the C-terminal domain (CTD) of HIV-1 capsid has been recently validated as potential target for antiviral drugs by peptide-based inhibitors; however, there is no report yet of any small molecule compounds that target this hydrophobic cavity. In order to fill this gap and discover new classes of ant-HIV-1 inhibitors, we undertook a docking-based virtual screening and subsequent analog search, and medicinal chemistry approaches to identify small molecule inhibitors against this target. This article reports for the first time, to the best of our knowledge, identification of diverse classes of inhibitors that efficiently inhibited the formation of mature-like viral particles verified under electron microscope (EM) and showed potential as anti-HIV-1 agents in a viral infectivity assay against a wide range of laboratory-adapted as well as primary isolates in MT-2 cells and PBMC. In addition, the virions produced after the HIV-1 infected cells were treated with two of the most active compounds showed drastically reduced infectivity confirming the potential of these compounds as anti-HIV-1 agents. We have derived a comprehensive SAR from the antiviral data. The SAR analyses will be useful in further optimizing the leads to potential anti-HIV-1 agents.  相似文献   

2.
3.
Human immunodeficiency virus type 1 (HIV-1) is responsible for the worldwide AIDS pandemic. Due to the lack of prophylactic HIV-1 vaccine, drug treatment of the infected patients becomes essential to reduce the viral load and to slow down progression of the disease. Because of drug resistance, finding new antiviral agents is necessary for AIDS drug therapies. The interaction of gp120 and co-receptor (CCR5/CXCR4) mediates the entry of HIV-1 into host cells, which has been increasingly exploited in recent years as the target for new antiviral agents. A conserved co-receptor binding site on gp120 that recognizes sulfotyrosine (sTyr) residues represents a structural target to design novel HIV entry inhibitors. In this work, we developed an efficient synthesis of sulfotyrosine dipeptide and evaluated it as an HIV-1 entry inhibitor.  相似文献   

4.
5.
6.
存在于宿主细胞质中的亲环素A(Cyclophilin A,CypA)对HIV-1的感染性具有重要影响。在病毒颗粒的脱壳过程中,CypA与衣壳蛋白的相互作用可破坏病毒衣壳的稳定性,加快病毒颗粒的解装配,并将病毒RNA释放出来进行逆转录,从而促进HIV-1的增殖。阻断CypA与衣壳蛋白的相互作用可以降低HIV-1的感染性,因此CypA极有可能成为抗HIV-1药物开发的新靶点。本综述主要介绍CypA的结构及功能,并对一些具有抗HIV-1活性的CypA抑制剂做一简要介绍。  相似文献   

7.
8.
Existing AIDS therapies are out of reach for most HIV-infected people in developing countries and, where available, they are limited by their toxicity and their cost. New anti-HIV agents are needed urgently to combat emerging viral resistance and reduce the side effects associated with currently available drugs. Toward this end, LeapFrog, a de novo drug design program was used to design novel, potent, and selective inhibitors of HIV-1 integrase. The designed compounds were synthesized and tested for in vitro inhibition of HIV-1 integrase. Out of the 25 compounds that were designed, and synthesized, four molecules (compounds 23, 26, 43, and 59) showed moderate to low inhibition of HIV-1 integrase for 3'-processing and 3'-strand transfer activities. Nonetheless, these compounds possess structural features not seen in known HIV-1 integrase inhibitors and thus can serve as excellent leads for further optimization of anti-HIV-1 integrase activity.  相似文献   

9.
A critical step in the replicative cycle of the human immunodeficiency virus HIV-1 involves the proteolytic processing of the polyprotein products Prgag and Prgag-pol that are encoded by the gag and pol genes in the viral genome. Inhibitors of this processing step have the potential to be important therapeutic agents in the management of acquired immunodeficiency syndrome. Current assays for inhibitors of HIV-1 protease are slow, cumbersome, or susceptible to interference by test compounds. An approach to the generation of a rapid, sensitive assay for HIV-1 protease inhibitors that is devoid of interference problems is to use a capture system which allows for isolation of the products from the reaction mixture prior to signal quantitation. In this paper, we describe a novel method for the detection of HIV-1 protease inhibitors utilizing the concept of particle concentration fluorescence. Our approach involves the use of the HIV-1 protease peptide substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val which has been modified to contain a biotin moiety on one side and a fluorescein reporter molecule on the other side of the scissile Tyr-Pro bond. This substrate is efficiently cleaved by the HIV-1 protease and the reaction can be readily quantitated. Known inhibitors of the protease were readily detected using this new assay. In addition, this approach is compatible with existing instrumentation in use for broad screening and is highly sensitive, accurate, and reproducible.  相似文献   

10.
Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.  相似文献   

11.
12.
13.
The chemokines and their receptors have been receiving exceptional attention in recent years following the discoveries that some chemokines could specifically block human immunodeficiency virus type 1 (HIV-1) infection and that certain chemokine receptors were the long-sought coreceptors which, along with CD4, are required for the productive entry of HIV-1 and HIV-2 isolates. Several chemokine receptors or orphan chemokine receptor-like molecules can support the entry of various viral strains, but the clinical significance of the CXCR4 and CCR5 coreceptors appear to overshadow a critical role for any of the other coreceptors and all HIV-1 and HIV-2 strains best employ one or both of these coreceptors. Binding of the HIV-1 envelope glycoprotein gp120 subunit to CD4 and/or an appropriate chemokine receptor triggers conformational changes in the envelope glycoprotein oligomer that allow it to facilitate the fusion of the viral and host cell membranes. During these interactions, gp120 appears to be capable of inducing a variety of signaling events, all of which are still not defined in detail. In addition, the more recently observed dichotomous effects, of both inhibition and enhancement, that chemokines and their receptor signaling events elicit on the HIV-1 entry and replication processes has once again highlighted the intricate and complex balance of factors that govern the pathogenic process. Here, we will review and discuss these new observations summarizing the potential significance these processes may have in HIV-1 infection. Understanding the complexities and significance of the signaling processes that the chemokines and viral products induce may substantially enhance our understanding of HIV-1 pathogenesis, and perhaps facilitate the discovery of new ways for the prevention and treatment of HIV-1 disease.  相似文献   

14.
15.
16.
The gp41 subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein mediates the fusion of viral and host cell membranes. As the HIV-1 enters the host cells, the 2 helical regions, HR1 and HR2, in the ectodomain of gp41 can form a 6-helix bundle, which brings the viral and target cell membranes to close proximity and serves as an attractive target for developing HIV-1 fusion inhibitors. Now, there are several cell- and molecule-based assays to identify potential HIV-1 fusion inhibitors targeting gp41. However, these assays cannot be used universally because they are time-consuming, inconvenient, and expensive. In the present study, the authors expressed and purified GST-HR121 and C43-30a proteins that were derived from the HIV-1 gp41 ectodomain region. GST-HR121 has a function similar to the HR1 peptide of gp41, whereas C43-30a is an HR2-derived peptide that added 50 amino acid residues (aa) in the N-terminal of C43. Further research found they could interact with each other, and a potential HIV-1 fusion inhibitor could inhibit this interaction. On the basis of this fact, a novel, rapid, and economic enzyme-linked immunosorbent assay was established, which can be developed for high-throughput screening of HIV-1 fusion inhibitors.  相似文献   

17.
Integration of viral DNA into host cell DNA is an essential step in retroviral (HIV-1) replication and is catalyzed by HIV-1 integrase. HIV-1 integrase is a novel therapeutic target and is the focus of efforts to identify effective inhibitors that will prevent/or cure HIV infections. Four novel naphtho-gamma-pyrones, belonging to the chaetochromin and ustilaginoidin family, were discovered as inhibitors of HIV-1 integrase from the screening of fungal extracts using a recombinant in vitro assay. These compounds inhibit both the coupled and strand transfer activity of HIV-1 integrase with IC(50) values of 1-3 and 4-12 microM, respectively. The discovery, structure elucidation, chemical modification and the structure-activity relationship of these compounds are described.  相似文献   

18.

Background

HIV-1 infected macrophages and microglia are long-lived viral reservoirs persistently producing viral progenies. HIV-1 infection extends the life span of macrophages by promoting the stress-induced activation of the PI3K/Akt cell survival pathway. Importantly, various cancers also display the PI3K/Akt activation for long-term cell survival and outgrowth, and Akt inhibitors have been extensively searched as anti-cancer agents. This led us to investigate whether Akt inhibitors could antagonize long-term survival and cytoprotective phenotype of HIV-1 infected macrophages.

Principal Findings

Here, we examined the effect of one such class of drugs, alkylphospholipids (ALPs), on cell death and Akt pathway signals in human macrophages and a human microglial cell line, CHME5, infected with HIV-1 BaL or transduced with HIV-1 vector, respectively. Our findings revealed that the ALPs, perifosine and edelfosine, specifically induced the death of HIV-1 infected primary human macrophages and CHME5 cells. Furthermore, these two compounds reduced phosphorylation of both Akt and GSK3β, a downstream substrate of Akt, in the transduced CHME5 cells. Additionally, we observed that perifosine effectively reduced viral production in HIV-1 infected primary human macrophages. These observations demonstrate that the ALP compounds tested are able to promote cell death in both HIV-1 infected macrophages and HIV-1 expressing CHME5 cells by inhibiting the action of the PI3K/Akt pathway, ultimately restricting viral production from the infected cells.

Significance

This study suggests that Akt inhibitors, such as ALP compounds, may serve as potential anti-HIV-1 agents specifically targeting long-living HIV-1 macrophages and microglia reservoirs.  相似文献   

19.
Novel broadly neutralizing antibodies targeting HIV-1 hold promise for their use in the prevention and treatment of HIV-1 infection. Pre-clinical results have encouraged the evaluation of these antibodies in healthy and HIV-1-infected humans. In first clinical trials, highly potent broadly neutralizing antibodies have demonstrated their safety and significant antiviral activity by reducing viremia and delaying the time to viral rebound in individuals interrupting antiretroviral therapy. While emerging antibody-resistant viral variants have indicated limitations of antibody monotherapy, strategies to enhance the efficacy of broadly neutralizing antibodies in humans are under investigation. These include the use of antibody combinations to prevent viral escape, antibody modifications to increase the half-life and the co-administration of latency-reversing agents to target the cellular reservoir of HIV-1. We provide an overview of the results of pre-clinical and clinical studies of broadly HIV-1 neutralizing antibodies, discuss their implications and highlight approaches for the ongoing advancement into humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号