首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In summary, dietary deficiency of lipotropic nutrients or labile methyl supply enhances “spontaneous” and chemical carcinogenesis in the liver of rats. The deficiency also enhances DMH carcinogenesis in the rat colon and PCZ carcinogenesis in the rat mammary gland. In the PCZ model, parallel studies using MTX to induce biochemical changes analogous in some characteristics to the lipotrope-deficient model also showed evidence suggestive of enhancement of carcinogenesis, although the results were not statistically significant. PCZ interfered with hepatic choline metabolism, particularly in lipotrope-deficient and MTX-treated rats. This effect may be related to the enhanced carcinogenicity of PCZ in the mammary gland.  相似文献   

2.
The direct-acting cytotoxic properties of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and N-hydroxy-2-aminofluorene (N-OH-AF) have been determined in repair-proficient (AA8-4) and repair-deficient (UV-5) Chinese hamster ovary cells. Cytotoxicity comparisons indicate that UV-5 cells are considerably more sensitive to exposure to N-OH-AAF than is the parental AA8-4 cell line, i.e., concentrations needed to obtain a D37 for survival of AA8-4 is greater than 5-fold higher than for UV-5. Mutation analysis at the HGPRT locus also indicates the increased sensitivity of UV-5 cells to N-OH-AAF as witnessed by an enhanced induction of 6-thioguanine-resistant colonies at equitoxic doses. Conversely, N-OH-AAF, did not induce a 'UV-mimetic' response when comparing genotoxicity between these two cell lines. Our data coupled with previously published model-building and adduct removal studies (Broyde and Hingerty, 1983; Fuchs and Daune, 1974; Grunberger and Weinstein, 1976; Yamasaki et al., 1977) suggest that the minor DNA adduct species, N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene, may be responsible for the hypermutagenicity witnessed in DNA excision-repair-deficient cells treated with N-OH-AAF.  相似文献   

3.
We have shown that N-hydroxy-2-acetylaminofluorene, a metabolite of 2-acetylaminofluorene, is converted via a nitroxide free radical into N-acetylaminofluorene and 2-nitrosofluorene by H2O2 in the presence of methemoglobin. Utilizing optical methods, we have demonstrated that the rate of 2-nitrosofluorene production parallels that of N-hydroxy-2-acetylaminofluorene oxidation. This evidence is consistent with a model whereby two molecules of N-hydroxy-2-acetylaminofluorene yield two nitroxide free radicals which then dismutate to form one molecule of N-acetoxy-2-acetylaminofluorene and one molecule of 2-nitrosofluorene. The Km of N-hydroxy-2-acetylaminofluorene for this reaction is 114 microM with a Vmax of 50 microM/min.  相似文献   

4.
The oxidation of carcinogenic hydroxamic acids, N-hydroxy-N-2-fluorenylacetamide (N-OH-2-FAA) and N-hydroxy-N-3-fluorenylacetamide (N-OH-3-FAA) catalyzed by horseradish peroxidase (HRP) or cytochrome c in the presence of H2O2 was investigated. HRP/H2O2 was a more efficient system in oxidation of both hydroxamic acids and the standard substrate, guaiacol, then cytochrome c/H2O2. Peroxidative activity of cytochrome c was shown after incubation with Triton X-100 and H2O2 for 20 min at room temperature in 0.05 M phosphate buffer (pH 7.5) or in 0.1 M sodium acetate (pH 6.0) without Triton X-100. Both hydroxamic acids were oxidized to nitroxyl free radicals as shown by electron spin resonance (ESR) spectroscopy. These radicals dismutated to equimolar amounts of 2- or 3-nitrosofluorene and acetate esters of the corresponding hydroxamic acids as shown by thin layer chromatography and spectrophotometric analysis of the products. In addition, large amounts of the N-fluorenylamides were generated in the reactions with cytochrome c/H2O2 system. Of the products, only 2- or 3-nitrosofluorene per se or when generated from the oxidation of the hydroxamic acids, interacted with lecithin (1 mg/ml) to yield ESR signals of the immobilized nitroxyl free radicals. In contrast to HRP/H2O2 system, in which the initial velocity of the radical formation was too fast to measure and the maximal concentrations of the nitroxyl free radicals of both hydroxamic acids were similar, in the cytochrome c/H2O2 system the nitroxyl free radical of N-OH-2-FAA formed at a 6-fold faster rate and accumulated at a 2-fold higher concentration than the radical of N-OH-3-FAA. In both enzyme systems, the persistence of the signal and the length of time before it had decreased to one half its maximum were several-fold longer for the nitroxyl free radical of N-OH-3-FAA than for that of N-OH-2-FAA. These data showed that these nitroxyl free radicals differed in their kinetic properties. One electron oxidation of N-OH-3-FAA by HRP/H2O2 system and of both isomeric hydroxamic acids by cytochrome c/H2O2 system are reported for the first time in this work and may be considered an activation reaction in carcinogenesis by these compounds.  相似文献   

5.
The hepatic metabolism of arylamine bladder carcinogens to N-hydroxy arylamine N-glucuronides, their excretion in the urine, and their subsequent acidic hydrolysis to highly carcinogenic and reactive N-hydroxy arylamines have been proposed as essential steps in arylamine-induced urinary bladder carcinogenesis. In this study, alteration of urinary pH, inhibition of metabolic sulfation, and blockage of biliary disposition were shown to profoundly affect the urinary excretion of the probable ultimate bladder carcinogen, N-hydroxy-2-naphthylamine (N-HO-2-NA) and its N-glucuronide conjugate. The normal pH of rat urine (6.7) was altered to 5.7 or 7.7 by administration of NH4Cl or NaHCO3 in the drinking water. Subsequent treatment with either 2-naphthylamine (2-NA) or 2-nitronaphthalene (2-NN) resulted in increased urinary levels of free N-HO-2-NA (relative to its N-glucuronide) in acidic urines and decreased relative amounts of free N-HO-2-NA in alkaline urines. In addition, 2-NN yielded 5--10-fold greater levels of urinary N-HO-2-NA and its N-glucuronide than rats given 2-NA; and 2-NA was not detected as a urinary metabolite of 2-NN. Some 12 additional metabolites of 2-NA and 2-NN were also found. Of these, 2-amino-1-naphthol and its sulfate and glucuronide conjugates were quantitated. From these data, 2-NA and 2-NN appear to share common metabolic pathways which yield free N-HO-2-NA as a putative ultimate urinary bladder carcinogen. Pentachlorophenol, a known inhibitor of hepatic sulfotransferases, was shown to cause a 2--3-fold increase in the urinary levels of N-HO-2-NA N-glucuronide and N-HO-2-NA from 2-NA-treated rats. Similarly, inhibition of the biliary excretion of 2-NA by bile duct ligation resulted in a 6-fold increase in total urinary N-HO-2-NfA. Furthermore, analyses of bile revealed that substantial amounts of N-HO-2-NA N-glucuronide, but not free N-HO-2-NA, were present. The role of urinary versus biliary excretion of N-hydroxy arylamines in relation to bladder and colon carcinogenesis is discussed.  相似文献   

6.
A cytochemical study of RNA was carried out in gonadotropic basophils and oxyphils of adenohypophysis of albino nonstrain rats during DMBA-induced mammary cancer growth. A stage character is found for changes in the RNA content depending on the mammary carcinogenesis phase. This shows that DMBA carcinogenic action besides a direct damage effect on the mammary gland is realized to a considerable extent through the endocrine system.  相似文献   

7.
Picene, a polycyclic aromatic hydrocarbon (PAH) of environmental relevance has recently been predicted to be carcinogenic, based on quantum mechanical calculation, although in several animal studies no carcinogenicity could be detected. In order to find out if the metabolism of this PAH can provide an explanation for its lack of carcinogenicity, picene was incubated with the hepatic microsomal fraction of Sprague-Dawley rats, which had been pretreated with Aroclor 1254. Sixteen ethyl acetate-extractable metabolites could be separated by reversed-phase high-performance liquid chromatography. Comparison of the chromatographic behavior and the UV and mass spectral properties of the metabolites with those of synthetic derivatives of picene allowed the identification of trans-1,2-, -3,4-, -5,6-dihydrodiol as well as 2- and 4-phenol as microsomal metabolites of picene. At a substrate concentration of 2.7 microM and an amount of 68 micrograms microsomal protein per ml incubation volume, 4-picenol was the main microsomal metabolite with 32.2% of total metabolic conversion, followed by the 1,2-(bay-region)dihydrodiol with 16.7%, the 3,4-(M-region)dihydrodiol with 15.9%, 2-picenol with 9.1% and the 5,6-(K-region)dihydrodiol with 1.6%. In this respect the metabolism of picene is not significantly different from that of the carcinogenic PAH benzo[a]pyrene and dibenz[a,h]anthracene. The M-region dihydrodiols, potential precursors of electrophilically reactive dihydrodiol bay-region epoxides, are formed from all three PAHs at 11-16% of total metabolic conversion. From the 2.8- to 4.4-fold lower amounts of polar and water-soluble metabolites of picene as compared to dibenz[a,h]anthracene and benzo[a]pyrene it is deduced that dihydrodiol epoxides are generated from picene to a much smaller extent than from the two carcinogenic PAHs. The lacking carcinogenicity of picene could therefore result from the inability of microsomal enzymes to transform its M-region dihydrodiol to dihydrodiol bay-region epoxides in amounts necessary to initiate carcinogenesis.  相似文献   

8.
The N-formyl, N-acetyl and N-propionyl derivatives of N-hydroxy-trans-4-aminostilbene (N-OH-AS), N-hydroxy-4-aminobiphenyl (N-OH-ABP) and N-hydroxy-2-aminonaphthalene (N-OH-AN) were synthesized and examined for their mutagenicities in Salmonella typhimurium TA 98. The N-formyl derivatives were direct-acting mutagens possibly due to hydrolysis, either spontaneously or by bacterial enzymes to hydroxylamines. Their mutagenicities were enhanced by rat liver microsomes and cytosol. All acetyl and propionyl derivatives required activation by either liver cytosol or microsomes. NADPH slightly decreased the microsome-mediated mutagenicities of the N-acyl derivatives of N-OH-AN. However, it greatly enhanced the cytosol-mediated mutagenicities of these hydroxamic acids, probably due to stabilization of their hydroxylamine derivatives. The mutagenicities reported here do not correlate with previously reported carcinogenicity data. Thus, data obtained in Salmonella mutagenicity studies may not necessarily directly reflect carcinogenic potential in mammalian systems due to the different mechanisms of activation.  相似文献   

9.
R A Gilissen  J H Meerman 《Life sciences》1992,51(16):1255-1260
Sulfation activity towards N-hydroxy-2-acetylaminofluorene and 4-nitrophenol was determined in male rat liver cytosol at several time points after partial hepatectomy corresponding to G1-, S-, and M-phase. N-hydroxy-2-acetylaminofluorene sulfation activity decreased by 80% when hepatocytes entered the G1-phase. This lower activity was maintained during the S-phase and M-phase, but was restored when hepatocytes entered the G0-phase again. Sulfation activity towards 4-nitrophenol did not alter after hepatectomy. Various other cytosolic enzyme activities were determined after hepatectomy to investigate the specificity of the decrease in sulfation activity. Lactate dehydrogenase and glucose-6-phosphate dehydrogenase activities were increased in the S- and M-phase by maximally 80% and 60%, respectively. Glutathione-S-transferase and glutamate-pyruvate transaminase activity did not alter during the cell cycle. These results indicate that sulfation of N-hydroxy-2-acetylaminofluorene in hepatocytes may depend on the phase of the cell cycle. The relevance of the finding is discussed in relation to the resistance of proliferating (pre)neoplastic hepatocytes to the toxic and mitoinhibitory effects of N-hydroxy-2-acetylaminofluorene.  相似文献   

10.
The effects of vitamins A, C, and E and of selenium on carcinogenesis are briefly summarized and updated. These vitamins and minerals were selected because they have been studied extensively in recent years with a variety of carcinogenesis models. The consumption of vitamin A and its precursors (carotenoids) has been negatively correlated with cancer at a number of sites, particularly the lung. Animal investigations on vitamin A involvement in carcinogenesis have generally been of three types: those assessing the effect of vitamin A deficiency, the effect of excess vitamin A, or the effect of supplementation with synthetic analogs of vitamin A. Vitamin A deficiency had no effect on salivary gland carcinogenesis, enhanced urinary bladder, lung, and liver carcinogenesis, and inhibited colon carcinogenesis. Excess of various forms of vitamin A enhanced or inhibited skin tumorigenesis, inhibited mammary carcinogenesis in rats (but not in mice), and carcinogenesis of the forestomach, liver, and urinary bladder (with one model, but not with another), or enhanced or did not influence lung carcinogenesis. Vitamin A analogs have enhanced or inhibited skin tumorigenesis, inhibited salivary gland, mammary, and urinary bladder carcinogenesis, enhanced tracheal and liver carcinogenesis, and either enhanced or inhibited pancreas carcinogenesis, depending upon the model employed. Although retinoids have been shown to inhibit carcinogenesis at many sites, numerous negative studies have been reported and some reports have indicated enhanced carcinogenesis. The most convincing evidence for the involvement of vitamin C in cancer prevention is the ability of ascorbic acid to prevent formation of nitrosamine and of other N-nitroso compounds. In addition vitamin C supplementation was shown to inhibit skin, nose, tracheal, lung, and kidney carcinogenesis, to either not influence or enhance skin, mammary gland, and colon carcinogenesis, and to enhance urinary bladder carcinogenesis, when given as sodium ascorbate, but not when given as ascorbic acid. Like vitamin C, vitamin E can inhibit nitrosation. Vitamin E was shown to inhibit skin, cheek pouch, and forestomach carcinogenesis, to enhance or inhibit colon carcinogenesis, and to have no effect on or to inhibit mammary gland carcinogenesis, depending upon the method of vitamin E administration or the level of dietary selenium or dietary fat. Selenium effects on carcinogenesis have been recently reviewed and the present discussion only updates this area by indicating that enhancement of carcinogenesis by dietary selenium supplements has been observed in the liver, pancreas, and skin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
4,4'-Methylene-dianiline (MDA) and 4,4'-methylene-bis-2-chloroaniline (MOCA) are polycyclic aromatic amines that are currently used in industry. Both compounds have been found to be bacterial mutagens and to be positive in a number of assays for genotoxicity. In animal studies, MDA has induced thyroid and liver neoplasms while exposure to MOCA resulted in a variety of tumors including those of the liver, mammary gland and bladder. Epidemiologic proof of human carcinogenicity of both compounds is lacking; however, there is evidence that MOCA can be metabolized to mutagenic products by human tissue. In this paper, the major finding concerning the biotransformation, genotoxicity and carcinogenicity of MDA and MOCA are reviewed.  相似文献   

12.
M Onoda  H Inano 《Nitric oxide》2000,4(5):505-515
We have hypothesized that one aspect of the antitumor activity of curcumin (diferuloylmethane) during the promotion stage of mammary gland tumorigenesis may be linked to reduction of free radicals (Inano et al., Carcinogenesis, 20: 1011-1018, 1999). Nitric oxide (NO) has been found to inflict damage on important biomolecules, and the overproduction of NO in diseases may be implicated in carcinogenesis and tumor progression. We have reported that the presence of three isoforms of nitric oxide synthases (NOS) and NO generation in the mammary gland correlate with the mammary gland development and mammary carcinogenesis. We, therefore, investigated the inhibitory activity of curcumin for the production of NO in rat mammary glands by using an organ culture system to validate the effectiveness and usefulness of curcumin in the pathophysiology of the mammary gland. A diced mammary gland (approximately 3 mm cubes) from the inguinal part of a female Wistar-MS rat treated with estradiol and progesterone was cultured with 2 ml of 5% FCS/DMEM in the presence or absence of LPS (0.5 microg/ml) for 2-3 days. Curcumin ( approximately 100 microM) was added at the same time to the LPS-treated cultures. In some experiments, curcumin was added to the culture after the LPS had been washed out. The NO production was significantly increased (by almost 20-fold compared to the control) by the addition of LPS to the culture system. This enhancement of NO production by LPS was reduced to 76 and to 56% by addition of 30 and 100 microM curcumin, respectively, to the culture. When LPS was eliminated from the culture after prestimulation for 1 day, the production of NO by the mammary gland dropped off, although some NO was still detectable. Curcumin did not further inhibit the production of NO by the prestimulated mammary gland after the elimination of LPS from the culture. The inducible nitric oxide synthase (iNOS, 122 kDa) and endothelial nitric oxide synthase (eNOS, 152 kDa) isoforms were detected in the mammary gland extracts at the end of the organ culture. The quantity of iNOS was apparently increased in the gland treated with LPS, while the eNOS expression was clearly diminished. Curcumin (100 microM) obviously suppressed the iNOS expression in the mammary glands cultured with LPS, and a recovery in the eNOS expression was observed. On the other hand, curcumin exhibited scavenging activity for the NO released from N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)-ethanamine (NOC 12), a NO donor compound, in the coincubation mixture. These results indicate that curcumin has the ability to inhibit iNOS induction by LPS in the mammary gland and to scavenge NO radicals, which might explain, at least partly, its therapeutic properties in inflammation of the mammary gland.  相似文献   

13.
P Rio  M Leng 《Nucleic acids research》1983,11(14):4947-4956
The reaction between the chemical carcinogen N-hydroxy-2-aminofluorene and poly (dG-dC) . poly (dG-dC) (B-form), poly (dG-m5dC) . poly (dG-m5dC) (B-or Z-form), poly(dG-br5dC) . poly (dG-br5dC) (Z-form) has been studied. The carcinogen binds covalently to B-DNA but does not bind significantly to Z-DNA. These results are discussed as related to the accessibility, the electrostatic potential and the dynamic structure of DNA. The accessibility and the electrostatic potential of DNA do not explain the difference in reactivity of the carcinogen since a related carcinogen N-acetoxy-N-acetyl-2-aminofluorene binds equally well to both B and Z-DNA. On the other hand, poly (dG-dC) . poly(dG-dC) and poly (dG-br5dC) . poly(dG-br5dC), in presence of ethidium bromide binds equally well to N-hydroxy-2-aminofluorene. It is suggested that the very low binding of this carcinogen to Z-DNA as compared to B-DNA is due to differences in the dynamic structures of these two forms of DNA.  相似文献   

14.
Androgens influence the development and growth of the mammary gland in women. Treatment of animals and cultured cells with androgens has either inhibitory or stimulatory effects on the proliferation of mammary epithelia and cancer cells; the mechanisms for these dual functions are still not very clear and are discussed in this review. Epidemiological data suggest that, similar to increased estrogens, elevated androgens in serum may be associated with the development of breast cancer. Experiments in rodents have also shown that simultaneous treatment of androgen and estrogen synergizes for mammary gland carcinogenesis. Similar synergistic effects of both hormones have been observed for carcinogenesis of the uterine myometrium of female animals and for carcinogenesis of the prostate and deferens of males. There are also clinical and experimental indications for a possible association of elevated levels of both androgens and estrogens with the development of ovarian and endometrial cancers. A hypothesis is thus proposed that concomitant elevation in both androgens and estrogens may confer a greater risk for tumorigenesis of the mammary gland, and probably other female reproductive tissues than an elevation of each hormone alone.  相似文献   

15.
The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.  相似文献   

16.
Both mammary gland development and mammary carcinogenesis involve extensive remodeling of the mammary gland extracellular matrix. The expression of four membrane-type matrix metalloproteinases (MT-MMPs) with matrix remodeling potential in development and tumorigenesis was evaluated by in-situ hybridization on mouse mammary gland sections. MT1-MMP and MT3-MMP were found in the mammary stroma mainly around epithelial structures in both developing and mature mammary gland. In contrast, MT2-MMP was found exclusively in the mammary epithelium. Lactating gland expressed none of the examined MT-MMPs. Mammary gland tumors expressed MT1-MMP, MT2-MMP, and MT3-MMP while MT4-MMP was not expressed in any developmental or cancerous stage analyzed here. Our results suggest that MT1-MMP, MT2-MMP, and MT3-MMP may be involved in remodeling of both the normal and diseased mammary gland either directly or indirectly by activation of other MMPs.  相似文献   

17.
The cyclooxygenase (COX)-2 gene encodes an inducible prostaglandin synthase enzyme that is overexpressed in adenocarcinomas and other tumors. Deletion of the murine Cox-2 gene in Min mice reduced the incidence of intestinal tumors, suggesting that it is required for tumorigenesis. However, it is not known if overexpression of Cox-2 is sufficient to induce tumorigenic transformation. We have derived transgenic mice that overexpress the human COX-2 gene in the mammary glands using the murine mammary tumor virus promoter. The human Cox-2 mRNA and protein are expressed in mammary glands of female transgenic mice and were strongly induced during pregnancy and lactation. Female virgin Cox-2 transgenic mice showed precocious lobuloalveolar differentiation and enhanced expression of the beta-casein gene, which was inhibited by the Cox inhibitor indomethacin. Mammary gland involution was delayed in Cox-2 transgenic mice with a decrease in apoptotic index of mammary epithelial cells. Multiparous but not virgin females exhibited a greatly exaggerated incidence of focal mammary gland hyperplasia, dysplasia, and transformation into metastatic tumors. Cox-2-induced tumor tissue expressed reduced levels of the proapoptotic proteins Bax and Bcl-x(L) and an increase in the anti-apoptotic protein Bcl-2, suggesting that decreased apoptosis of mammary epithelial cells contributes to tumorigenesis. These data indicate that enhanced Cox-2 expression is sufficient to induce mammary gland tumorigenesis. Therefore, inhibition of Cox-2 may represent a mechanism-based chemopreventive approach for carcinogenesis.  相似文献   

18.
Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals.  相似文献   

19.
The DNA lesions induced by active oxygen species generated from N-hydroxy-2-naphthylamine were quantitated by the alkaline elution technique as single-strand breaks using cultured human-skin fibroblasts. When cells were treated at 20 degrees C for 2 h with 0-25 microM carcinogen, the lesions increased biphasically with the concentration; the increase was slight below 10 microM while it was much larger and dose-dependent above this concentration. The dose response was similar for normal and xeroderma pigmentosum fibroblasts of complementation group A. There was no difference in the repair rate of single-strand breaks formed in these fibroblasts. The rates of repair of single strand breaks induced by N-hydroxy-2-naphthylamine and hydrogen peroxide were similar but slower than that of the repair of gamma-ray-induced single-strand breaks.  相似文献   

20.
Due to limited human exposure data, risk classification and the consequent regulation of exposure to potential carcinogens has conventionally relied mainly upon animal tests. However, several investigations have revealed animal carcinogenicity data to be lacking in human predictivity. To investigate the reasons for this, we surveyed 160 chemicals possessing animal but not human exposure data within the US Environmental Protection Agency chemicals database, but which had received human carcinogenicity assessments by 1 January 2004. We discovered the use of a wide variety of species, with rodents predominating, and of a wide variety of routes of administration, and that there were effects on a particularly wide variety of organ systems. The likely causes of the poor human predictivity of rodent carcinogenicity bioassays include: 1) the profound discordance of bioassay results between rodent species, strains and genders, and further, between rodents and human beings; 2) the variable, yet substantial, stresses caused by handling and restraint, and the stressful routes of administration common to carcinogenicity bioassays, and their effects on hormonal regulation, immune status and predisposition to carcinogenesis; 3) differences in rates of absorption and transport mechanisms between test routes of administration and other important human routes of exposure; 4) the considerable variability of organ systems in response to carcinogenic insults, both between and within species; and 5) the predisposition of chronic high dose bioassays toward false positive results, due to the overwhelming of physiological defences, and the unnatural elevation of cell division rates during ad libitum feeding studies. Such factors render profoundly difficult any attempts to accurately extrapolate human carcinogenic hazards from animal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号