首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructural organization of connective tissue microfibrils was studied in the mouse eye and also by means of in vitro experiments for reconstituting microfibrils. In the posterior chamber of the eye of the C57BL/6J mouse, 3 nm-wide ribbon-like double-tracked structures were present and were periodically associated on either side with 3.5 nm-wide particulate structures identified as pentosomes, the subunits of amyloid P component (AP). At certain sites, such composite structures were observed in various stages of helical winding, and in these helices, pentosomes were preferentially localized internally. In helices in the final stages of winding, the resulting rods appeared increasingly similar to those of microfibrils. In experiments in vitro, incubation of chondroitin sulfate proteoglycan (CSPG) in TRIS buffer, pH 7.4, at 35°C for 1 h produced random aggregates of 3 nm-wide double-tracked structures similar to those observed in the eye. Co-incubation of CSPG and AP resulted in the formation of rod-like structures arranged parallel to one another in approximately 50 nm-thick sheet-like layers. These rods were ultrastructurally similar to microfibrils and were made up of helically wound, 3 nm-wide double-tracked structures containing pentosomes within their core. The results of in vivo as well as in vitro experiments suggest the possibility that the connective tissue microfibril is composed of helically wound, CSPG-containing, 3 nm-wide double-tracked structures periodically associated with pentosomes which, as the helix becomes progressively tighter, fit with one another at the core of the helix to form successive 8.5 nm-wide disks of AP segments.  相似文献   

2.
High molecular weight aggregates were extracted from human amnion using buffers containing 6 M guanidine hydrochloride. Rotary shadowed preparations and negatively stained samples examined by electron microscopy showed that each aggregate appeared to be a string of globular structures joined by fine filaments, giving the appearance of beads on a string. The periodicity of the beads was variable. A mouse monoclonal antibody directed against a previously characterized pepsin fragment of fibrillin was used with gold-conjugated secondary antibody and immunoelectron microscopy to show that the aggregates contained fibrillin. Similar structures were found in non-denaturing homogenates of skin, tongue, ligament, ciliary zonule, cartilage, and vitreous humor. When immunogold-labeled beaded structures were prepared for electron microscopy in the same manner as tissue, the beaded structures could no longer be seen. Instead, gold-labeled microfibrils were found which appeared to be the same as the fibrillin-containing matrix microfibrils observed in connective tissues and often associated with elastin. Thus, standard TEM protocols including fixation, dehydration, and embedding alter the ultrastructural appearance of microfibrils as compared with negative stain or rotary shadowing techniques. When skin was stretched and prepared for electron microscopy while still under tension, beaded filaments were seen in the tissue sections, but were not visible in non-stretched controls. In addition, when stretched ligament was immunolabeled with antibody directed against fibrillin while still under tension, the periodicity of antibodies along the microfibrils increased compared with non-stretched controls. We propose that microfibrils contain globular structures connected by fine filaments composed at lease in part of highly ordered, periodically distributed fibrillin molecules, whose periodicity is subject to change dependent on the tensional forces applied to the tissue in which they are contained.  相似文献   

3.
《The Journal of cell biology》1986,103(6):2499-2509
A new connective tissue protein, which we call fibrillin, has been isolated from the medium of human fibroblast cell cultures. Electrophoresis of the disulfide bond-reduced protein gave a single band with an estimated molecular mass of 350,000 D. This 350-kD protein appeared to possess intrachain disulfide bonds. It could be stained with periodic acid-Schiff reagent, and after metabolic labeling, it contained [3H]glucosamine. It could not be labeled with [35S]sulfate. It was resistant to digestion by bacterial collagenase. Using mAbs specific for fibrillin, we demonstrated its widespread distribution in the connective tissue matrices of skin, lung, kidney, vasculature, cartilage, tendon, muscle, cornea, and ciliary zonule. Electron microscopic immunolocalization with colloidal gold conjugates specified its location to a class of extracellular structural elements described as microfibrils. These microfibrils possessed a characteristic appearance and averaged 10 nm in diameter. Microfibrils around the amorphous cores of the elastic fiber system as well as bundles of microfibrils without elastin cores were labeled equally well with antibody. Immunolocalization suggested that fibrillin is arrayed periodically along the individual microfibril and that individual microfibrils may be aligned within bundles. The periodicity of the epitope appeared to match the interstitial collagen band periodicity. In contrast, type VI collagen, which has been proposed as a possible microfibrillar component, was immunolocalized with a specific mAb to small diameter microfilaments that interweave among the large, banded collagen fibers; it was not associated with the system of microfibrils identified by the presence of fibrillin.  相似文献   

4.
Zeaxanthin, a carotenoid in the xanthophyll cycle, has been suggested to play a role in the protection against photodestruction. We have studied the importance of the parameters involved in zeaxanthin formation by comparing spinach plants grown in low light (100 to 250 mol m-2 s-1) to plants transferred to high light (950 mol m-2 s-1). Different parameters were followed for a total of 11 days. Our experiments show that violaxanthin de-epoxidase decreased between 15 and 30%, the quantity of xanthophyll cycle pigments doubled to 100 mmol (mol Chl)-1, corresponding to 27 mol m-2, and the rate of violaxanthin to zeaxanthin conversion was doubled. Lutein and neoxanthin increased from 50 to 71 mol m-2 and from 16 to 23 mol m-2, respectively. On a leaf area basis, chlorophyll and -carotene levels first decreased and then after 4 days increased. The chlorophyll a/b ratio was unchanged. The quantity of ascorbate was doubled to 2 mmol m-2, corresponding to an estimated increase in the chloroplasts from 25 to 50 mM. In view of our data, we propose that the increase in xanthophyll cycle pigments and ascorbate only partly explain the increased rate of conversion of violaxanthin to zeaxanthin, but the most probable explanation of the faster conversion is an increased accessibility of violaxanthin in the membrane.  相似文献   

5.
Fibrillin, a connective tissue macromolecule (Mr = 350,000) which is normally insoluble in its tissue form, has been purified from the medium of human skin fibroblast and ligament cells in culture. Analysis of the amino acid composition indicates that fibrillin contains approximately 14% cysteine, of which one-third appears to be in the free reactive sulfhydryl form. Electron microscopic images of fibrillin reveal an extended, flexible molecule approximately 148 nm long and 2.2 nm wide. These length measurements are consistent with shape calculations based upon velocity sedimentation data. It is likely that the material we have purified from cell culture medium represents monomeric fibrillin consisting of a single polypeptide chain. Additional ultrastructural immunohistochemical data presented here suggest a model for the parallel, head-to-tail alignment of fibrillin molecules in microfibrils.  相似文献   

6.
The Tight skin (Tsk) mutation is a duplication of the mouse fibrillin 1 (Fbn1) gene that results in a larger (418 kD) than normal (350 kD) protein; Tsk/+ mice display increased connective tissue, bone overgrowth, and lung emphysema. Lung emphysema, bone overgrowth, and vascular complications are the distinctive traits of mice with reduced Fbn1 gene expression and of Marfan syndrome (MFS) patients with heterozygous fibrillin 1 mutations. Although Tsk/+ mice produce equal amounts of the 418- and 350-kD proteins, they exhibit a relatively mild phenotype without the vascular complications that are associated with MFS patients and fibrillin 1-deficient mice. We have used genetic crosses, cell culture assays and Tsk-specific antibodies to reconcile this discrepancy and gain new insights into microfibril assembly. Mice compound heterozygous for the Tsk mutation and hypomorphic Fbn1 alleles displayed both Tsk and MFS traits. Analyses of immunoreactive fibrillin 1 microfibrils using Tsk- and species-specific antibodies revealed that the mutant cell cultures elaborate a less abundant and morphologically different meshwork than control cells. Cocultures of Tsk/Tsk fibroblasts and human WISH cells that do not assemble fibrillin 1 microfibrils, demonstrated that Tsk fibrillin 1 copolymerizes with wild-type fibrillin 1. Additionally, copolymerization of Tsk fibrillin 1 with wild-type fibrillin 1 rescues the abnormal morphology of the Tsk/Tsk aggregates. Therefore, the studies suggest that bone and lung abnormalities of Tsk/+ mice are due to copolymerization of mutant and wild-type molecules into functionally deficient microfibrils. However, vascular complications are not present in these animals because the level of functional microfibrils does not drop below the critical threshold. Indirect in vitro evidence suggests that a potential mechanism for the dominant negative effects of incorporating Tsk fibrillin 1 into microfibrils is increased proteolytic susceptibility conferred by the duplicated Tsk region.  相似文献   

7.
Fibrillin microfibrils endow mammalian connective tissues with elasticity and are fundamental for the deposition of elastin. The microfibrils are 57nm periodic supramolecular protein polymers with a mass of 2.4MDa per repeat. The detailed structure and organisation of most matrix assemblies is poorly understood due to their large size and complexity and it has proved a major challenge to define their structural organisation. Therefore, we have used low dose electron microscopy and single particle image analysis to study the structure of fibrillin microfibrils. Three novel features were detected: a globular feature that bridges the "arm" region, a double band of density crossing the microfibril and stain penetrating holes present in the interbead region, possibly produced by the removal of microfibril associated proteins in the purification procedure. Fine filaments of approximately 2.4nm diameter are resolved in the interbead region, which correspond to the reported diameter of the fibrillin molecule. Comparison of the stain exclusion pattern of microfibrils with the theoretical stain exclusion pattern of fibrillin packing models indicates that the intramolecular pleating model, where each fibrillin molecule is pleated within one microfibril period allowing extensibility by unpleating, has the best fit to the data.  相似文献   

8.
A few years ago no one would have suspected that the well-known disorder of connective tissue, Marfan syndrome, could be caused by mutations in a recently discovered extracellular component, fibrillin. Likewise, nobody would have predicted that fibrillin represents a small family of proteins that are associated with several pheno-typically overlapping disorders. The fibrillins are integral constituents of the non-collagenous microfibrils, with an average diameter of 10 nm. These aggregates are distributed in the extracellular matrix of virtually every tissue. Microfibrillar bundles provide the external coating to elastin in elastic fibers, and serve an anchoring function in non-elastic tissues. At higher resolution, individual microfibrils have a “beads-on-a-string” appearance resulting from the head-to-tail polymerization of multiple fibrillin aggregates. Structurally, fibrillin contains a series of repeated sequences homologous to the epidermal growth factor calcium-binding motif. Characterization of fibrillin mutations in Marfan syndrome patients, together with the elucidation of the structure of the fibrillin proteins, have provided new insights, and raised new questions, about the function of the 10 nm microfibrils. For example, it is possible that the fibrillins, in addition to serving a structural function, might also be involved in regulating cellular activities and morphogenetic programs. It is fitting that the long search for the Marfan syndrome gene has brought a novel group of proteins to the forefront of extracellular matrix biology.  相似文献   

9.
We propose a new model for the alignment of fibrillin molecules within fibrillin microfibrils. Automated electron tomography was used to generate three-dimensional microfibril reconstructions to 18.6-A resolution, which revealed many new organizational details of untensioned microfibrils, including heart-shaped beads from which two arms emerge, and interbead diameter variation. Antibody epitope mapping of untensioned microfibrils revealed the juxtaposition of epitopes at the COOH terminus and near the proline-rich region, and of two internal epitopes that would be 42-nm apart in unfolded molecules, which infers intramolecular folding. Colloidal gold binds microfibrils in the absence of antibody. Comparison of colloidal gold and antibody binding sites in untensioned microfibrils and those extended in vitro, and immunofluorescence studies of fibrillin deposition in cell layers, indicate conformation changes and intramolecular folding. Mass mapping shows that, in solution, microfibrils with periodicities of <70 and >140 nm are stable, but periodicities of approximately 100 nm are rare. Microfibrils comprise two in-register filaments with a longitudinal symmetry axis, with eight fibrillin molecules in cross section. We present a model of fibrillin alignment that fits all the data and indicates that microfibril extensibility follows conformation-dependent maturation from an initial head-to-tail alignment to a stable approximately one-third staggered arrangement.  相似文献   

10.
11.
Photodamage in chronically sun-exposed skin manifests clinically as deep wrinkles and histologically as extensive remodelling of the dermal extracellular matrix (ECM) and in particular, the elastic fibre system. We have shown previously that loss of fibrillin microfibrils, a key elastic fibre component, is a hallmark of early photodamage and that these ECM assemblies are susceptible in vitro to physiologically attainable doses of ultraviolet radiation (UVR). Here, we test the hypotheses that UVR-mediated photo-oxidation is the primary driver of fibrillin microfibril and fibronectin degradation and that prior UVR exposure will enhance the subsequent proteolytic activity of UVR-upregulated matrix metalloproteinases (MMPs).We confirmed that UVB (280-315 nm) irradiation in vitro induced structural changes to both fibrillin microfibrils and fibronectin and these changes were largely reactive oxygen species (ROS)-driven, with increased ROS lifetime (D2O) enhancing protein damage and depleted O2 conditions abrogating it. Furthermore, we show that although exposure to UVR alone increased microfibril structural heterogeneity, exposure to purified MMPs (1, −3, −7 and − 9) alone had minimal effect on microfibril bead-to-bead periodicity; however, microfibril suspensions exposed to UVR and then MMPs were more structurally homogenous. In contrast, the susceptibly of fibronectin to proteases was unaffected by prior UVR exposure. These observations suggest that both direct photon absorption and indirect production of ROS are important mediators of ECM remodelling in photodamage. We also show that fibrillin microfibrils are relatively resistant to proteolysis by MMPs −1, −3, −7 and − 9 but that these MMPs may selectively remove damaged microfibril assemblies. These latter observations have implications for predicting the mechanisms of tissue remodelling and targeted repair.  相似文献   

12.
The interactions of microfibril-associated glycoprotein (MAGP)-2 have been investigated with fibrillins and fibrillin-containing microfibrils. Solid phase binding assays were conducted with recombinant fragments covering fibrillin-1 and most of fibrillin-2. MAGP-2, and its structure relative MAGP-1, were found to bind two fragments spanning the N-terminal half of fibrillin-1 and an N-terminal fragment of fibrillin-2. Blocking experiments indicated that MAGP-2 had a binding site(s) close to the N terminus of the fibrillin-1 molecule that was distinct from that for MAGP-1 and an additional, more central binding site(s) that may be shared by the two MAGPs. Immunogold labeling of developing nuchal ligament tissue showed that MAGP-2 had regular covalent and periodic (about 56 nm) association with fibrillin-containing microfibrils of elastic fibers in this tissue. Further analysis of isolated microfibrils indicated that MAGP-2 was attached at two points along the microfibril substructure, "site 1" on the "beads" and "site 2" at the "shoulder" of the interbead region close to where the two "arms" fuse. In contrast, MAGP-1 was located only on the beads. Comparison of the MAGP-2 binding data with known fibrillin epitope maps of the microfibrils showed that site 1 correlated with the N-terminal MAGP-2 binding region, and site 2 correlated with the second, more central, MAGP-2 binding region on the fibrillin-1 molecule. Of particular note, immunolabeling at site 2 was markedly decreased, relative to that at site 1, on extended microfibrils with bead-to-bead periods over 90 nm, suggesting that site 2 may move toward the beads when the microfibril is stretched. The study points to MAGP-2 being an integral component of some populations of fibrillin-containing microfibrils. Moreover, the identification of multiple MAGP-binding sequences on fibrillins supports the concept that MAGPs may function as molecular cross-linkers, stabilizing fibrillin monomers in folded conformation within or between the microfibrils, and thus MAGPs may be implicated in the modulation of the elasticity of these structures.  相似文献   

13.
Fibrillin microfibrils endow mammalian connective tissues with elasticity and play a fundamental role in the deposition of elastin. The microfibrils are 57 nm periodic supramolecular protein polymers with a mass of 2.5 MDa per repeat. The organisation of molecules within a microfibril is still open to debate and structural studies are only just starting to unravel this issue. The contribution of microfibril associated proteins to microfibril ultrastructure and whether there are any tissue specific differences in microfibril structure is still unknown. Therefore, we have used low dose electron microscopy, single particle image analysis and atomic force microscopy to study the structure of fibrillin microfibrils from different tissues. EM images of microfibrils from aorta, ciliary zonules and vitreous humor were collected and more than 500 microfibril repeats from each sample were subjected to averaging. Averages from each sample were analysed using axial stain exclusion patterns and difference images to detect any variations between them. The overall morphology of fibrillin microfibrils was conserved between tissues and there were only very minor differences in the bead and shoulder region of microfibrils. These data suggest that the structure of isolated microfibrils represents the fibrillin scaffold, and either microfibril associated molecules are lost on purification or play only a minor role in microfibril structure.  相似文献   

14.
Fibrillin-rich microfibrils are the major structural components of the extracellular matrix that provide elasticity in a majority of connective tissues. The basis of elastic properties lies in the organization of fibrillin molecules, which, unfortunately, is still poorly understood. An X-ray diffraction study of hydrated fibrillin-rich microfibrils from zonular filaments has been conducted to give an insight into the molecular structure of microfibrils in intact tissue. A series of measurements was taken during controlled tissue extension to observe alterations in the lateral packing of microfibrils. Computer-generated simulated patterns were used to fit the experimental X-ray scattering data and to obtain the fibril diameter and lateral distance between the fibrils. The results suggest a nonlinear correlation between external strain and decrease in fibril diameter and lateral spacing. This was accompanied by a nonlinear increase in axial periodicity and a structure with a 160-nm periodicity, which is reported here for the first time using X-ray diffraction. These changes may reflect the unraveling of fibrillin from the complex folded arrangement into a linear structure. This finding supports a pleating model where fibrillin molecules are highly folded within the microfibrils; more importantly, the connection is made between the interaction of individual microfibrils and the change in their suprafibrillar coherent organization during extension. We suggest that the intermediate states observed in our study reflect sequential unfolding of fibrillin and can explain the process of its reversible unraveling.  相似文献   

15.
Summary In the present paper certain properties of potassium permanganate (KMnO4), a fixative used for electron microscopical investigations, have been studied in model test tube experiments and on tissues. Evidence was obtained that KMnO4 reacts with different types of biogenic monoamines resulting in a formation of a precipitate. In addition, also various monoamine analogues, precursors and metabolites reacts with KMnO4. The reaction taking place may be an oxidation-reduction-reaction in which KMnO4 is reduced, probably mainly to manganese dioxide by hydroxyl groups of the amines and related compounds. This is corroborated by the fact that no reaction takes place between KMnO4 and -phenylethylamine or amphetamine, two substances, which lack hydroxyl groups.Using labelled monoamines evidence was obtained that the amine partly is retained within the precipitate formed after the reaction with KMnO4 and also in tissues fixed with KMnO4, indicating a possibility to perform autoradiographic studies on KMnO4 fixed tissue.Electron microscopic studies on tissues fixed under various conditions revealed that fixation with low concentrations (0.6 and 1.0%) of KMnO4 and at high temperatures (about 20° C) leads to inferior results as to general morphology and as to the visualization of intraneuronal amine stores.Different types of permanganates were tested as fixatives. These results show that fixation with permanganates with monovalent metallic ions (K+, Li+ and Na+) give good results of comparable quality, whereas fixation with zinc permanganate results in seriously destroyed tissues. However, tissue fixed with calcium permanganate reveals very distinct membranes. Furthermore, evidence was obtained that fixation with high concentrations of LiMnO4 (6 and 9%) and NaMnO4 (6 and 9%) was more sensitive as to the demonstration of monoamines at the ultrastructural level as compared to 3% KMnO4. Thus, with e.g. 6 and 9% LiMnO4 small granular vesicles could be seen in slices from the caudate nucleus after incubation with -methyl-dopamine. This was not possible when using 3% KMnO4 as a fixative.  相似文献   

16.
《Journal of molecular biology》2018,430(21):4142-4155
Fibrillin microfibrils are evolutionarily ancient, structurally complex extracellular polymers found in mammalian elastic tissues where they endow elastic properties, sequester growth factors and mediate cell signalling; thus, knowledge of their structure and organization is essential for a more complete understanding of cell function and tissue morphogenesis. By combining multiple imaging techniques, we visualize three levels of hierarchical organization of fibrillin structure ranging from micro-scale fiber bundles in the ciliary zonule to nano-scale individual microfibrils. Serial block-face scanning electron microscopy imaging suggests that bundles of zonule fibers are bound together by circumferential wrapping fibers, which is mirrored on a shorter-length scale where individual zonule fibers are interwoven by smaller fibers. Electron tomography shows that microfibril directionality varies from highly aligned and parallel, connecting to the basement membrane, to a meshwork at the zonule fiber periphery, and microfibrils within the zonule are connected by short cross-bridges, potentially formed by fibrillin-binding proteins. Three-dimensional reconstructions of negative-stain electron microscopy images of purified microfibrils confirm that fibrillin microfibrils have hollow tubular structures with defined bead and interbead regions, similar to tissue microfibrils imaged in our tomograms. These microfibrils are highly symmetrical, with an outer ring and interwoven core in the bead and four linear prongs, each accommodating a fibrillin dimer, in the interbead region. Together these data show how a single molecular building block is organized into different levels of hierarchy from microfibrils to tissue structures spanning nano- to macro-length scales. Furthermore, the application of these combined imaging approaches has wide applicability to other tissue systems.  相似文献   

17.
Summary Monkey periodontal ligaments have been examined at the ultrastructural level to demonstrate the nature of reactive sites in oxytalan fibres. The high iron diamine (HID) and HID-thiocarbohydrazide-silver proteinate methods specific for sulphate groups, with and without prior oxidation with monopersulphate, were used. Oxytalan fibres were composed of bundles of microfibrils with a diameter of 11.5 ± 1.7 nm (mean ±s.d.,n = 50). In cross section the microfibrils were found to have a denser periphery, giving them a tubular appearance. The oxytalan microfibrils of non-oxidized specimens showed little reactivity with either HID method, except that the extracellular matrix material in close association with collagen fibrils stained weakly; in oxidized specimens, both HID methods strongly stained oxytalan microfibrils and weakly stained the extracellular matrix material. Such reactivity of oxytalan microfibrils was not altered by digestion with testicular hyaluronidase or chondroitinase ABC, performed prior to or after persulphate oxidation. Further, the sequential thiosulphation and HID method for the demonstration of disulphide and sulphhydryl groups stained oxytalan fibres moderately. These results indicate that the oxidative generation of sulphate groups in oxytalan fibres may occur from either disulphide or sulphhydryl groups, or both, rather than the result of unmasking of sulphated glycosaminoglycans.  相似文献   

18.
Melissa A. Melan 《Protoplasma》1990,153(3):169-177
Summary We have investigated the effects of microtubule stabilizing conditions upon microtubule patterns in protoplasts and developed a new method for producing protoplasts which have non-random cortical microtubule arrays. Segments of elongating pea epicotyl tissue were treated with the microtubule stabilizing drug taxol for 1 h before enzymatic digestion of the cell walls in the presence of the drug. Anti-tubulin immunofluorescence showed that 40 M taxol preserved regions of ordered microtubules. The microtubules in these regions were arranged in parallel arrays, although the arrays did not always show the transverse orientation seen in the intact tissue. Protoplasts prepared without taxol had microtubules which were random in distribution. Addition of taxol to protoplasts with random microtubule arrangements did not result in organized microtubule arrays. Taxol-treated protoplasts were used to determine whether or not organized microtubule arrays would affect the organization of cell wall microfibrils as new walls were regenerated. We found that protoplasts from taxol-treated tissue which were allowed to regenerate cell walls produced organized arrays of microfibrils whose patterns matched those of the underlying microtubules. Protoplasts from untreated tissue synthesized microfibrils which were disordered. The synthesis of organized microfibrils by protoplasts with ordered microtubules arrays shows that microtubule arrangements in protoplasts influence the arrangement of newly synthesized microfibrils.Abbreviations DIC differential interference contrast - DMSO dimethyl sulfoxide - FITC fluorescein isothiocyanate - IgG immunoglobulin G - PIPES piperazine-N,N-bis[2-ethane-sulfonic acid] - PBS phosphate buffered saline  相似文献   

19.
Polymer chains of (13)--d-glucan were dissolved with 1 M NaOH at 4° C from native microfibrillar protoplast nets. The chains associated into microfibrils during NaOH neutralization or dialysis. In contrast to the native microfibrils which are of uniform width individually (10 to 20 nm) and arranged in flat bundles, the microfibrils formed in vitro showed no band formation and consisted of fibrous spindle-shaped subunits of variable width or loose elementary fibrils about 1.7 nm wide. X-ray diagrams of native nets indicated a fairly high crystallinity and were different for wet and dry specimens. They corresponded to those of paramylon. Precipitated glucans produced diagrams different from the former and revealing a lower crystallinity especially with the dry samples.The X-ray pattern, combined with other data, allowed the precipitated microfibrils to be identified as aggregates of molecular strands composed each of three intertwined helical glucan chains. Since these triple helical chains are about 1.7 nm wide the elementary fibrils of this width can represent only single triple-helical strands. These helices have 7 glucose residues per turn and therefore a low symmetry which explains the poor crystallizing properties. The 7 membered helix represents a basic difference with the well crystallized native glucan which is built of highly symmetrical triple helices with 6 glucose residues per turn. Since 61 helical conformation is not formed in vitro at normal temperatures its generation in vivo must be due to the action of synthesizing enzymes at the protoplast membrane. The intertwining of these helices and crystallization of the strands are determined by their symmetry and physical properties of the chains. This characterizes the native microfibrils as products of self-assembly of enzymegenerated 61 helices.  相似文献   

20.
Marfan syndrome, a connective tissue disorder affecting the cardiovascular system, is caused by mutations of fibrillin-based microfibrils. These mutations often affect the calcium-binding domains, resulting in structural changes to the proteins. It is hypothesized that these Ca+2 binding sites regulate the structure and mechanical properties of the microfibrils. The mechanical properties of fresh and extracted lobster aortic rings in calcium solutions (1, 13 and 30 mM Ca+2) were measured. Samples underwent amino acid compositional analysis. Antibodies were produced against the material comprising extracted aortic rings. The ultrastructure of strained and unstrained samples was examined using transmission electron microscopy. Calcium level altered the tangent modulus of fresh vessels. These rings were significantly stiffer when tested at 30 mM Ca+2 compared to rings tested at 1 mM Ca+2. Amino acid comparisons between extracted samples, porcine and human fibrillin showed compositional similarity. Immunohistochemical analysis showed that antibodies produced against the material in extracted samples localized to the known microfibrillar elements in the lobster aorta and cross-reacted with fibrillin microfibrils of mammalian ciliary zonules. Ultrastructurally, vessels incubated in low calcium solutions showed diffuse interbead regions while those incubated in physiological or high calcium solutions showed interbead regions with more defined lateral edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号