首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have assayed the cross-linking of oligonucleotides containing repeated mitomycin-reactive CpG sites in order to assess the factors that enhance activation of the carbamoyl function at C10, yielding efficient mitomycin cross-linking. Drugs studied include mitomycin C (MC), N-methylmitomycin A (NMA), and the aziridinomitosene of NMA (MS). Drugs were reduced both by catalytic hydrogenation and by diothionite. We find that cross-linking by fully reduced NMA can be increased severalfold by addition of either excess dithionite reductant or the oxidant FeCl3. Enhancement by FeCl3 is not seen with MC or MS, but excess dithionite increases cross-linking by all three compounds. We explain the action of Fe3+ by postulating production of the semiquinone of the monoadduct of mitomycin reacted at the C1-position; according to this mechanism, departure of the carbamate from C10 is more efficient for the semiquinone than for the hydroquinone. However, our results imply that the hydroquinone can also function as a cross-linking agent. Excess dithionite, beyond that required for stoichiometric reduction, activates the carbamate 2-3-fold for cross-linking. We find that the fully reduced leucoaziridinomitosene is highly unstable in solution, yet it produces efficient cross-liking. Hence, this compound is highly reactive in DNA alkylation and a good candidate for the role of primary alkylating agent.  相似文献   

2.
3.
DNA sequence specificity of mitomycin cross-linking   总被引:2,自引:0,他引:2  
Using a gel electrophoresis assay, we show that the target DNA sequence cross-linked by N-methylmitomycin A, its aziridinomitosene, and mitomycin C is CpG, in strong preference over GpC. The yield per CpG site increases as the number of successive CpG sequences increases. Molecular modeling reveals no systematic difference between the energies of mitomycin cross-links at CpG in comparison with GpC. However, the distance between guanine amino groups in CpG sequences is nearly the same as the distance in the cross-linked adduct, whereas the amino group separation at GpC sites is substantially larger in the starting DNA than in the adduct. We suggest that the favorable placement of the second reaction center in CpG greatly accelerates the second step in the cross-linking reaction. As shown by a competition assay, mitomycins bind A-T and G-C sequences noncovalently equally well, even though the only sequence that yields appreciable cross-linking is CpG. N-Methylmitomycin A and its aziridinomitosene are found to be better cross-linking agents than is mitomycin C.  相似文献   

4.
We are interested in the role of asymmetric phosphate neutralization in DNA bending induced by proteins. We describe an experimental estimate of the actual electrostatic contribution of asymmetric phosphate neutralization to the bending of DNA by the Escherichia coli catabolite activator protein (CAP), a prototypical DNA-bending protein. Following assignment of putative electrostatic interactions between CAP and DNA phosphates based on X-ray crystal structures, appropriate phosphates in the CAP half-site DNA were chemically neutralized by methylphosphonate substitution. DNA shape was then evaluated using a semi-synthetic DNA electrophoretic phasing assay. Our results confirm that the unmodified CAP DNA half-site sequence is intrinsically curved by 26° in the direction enhanced in the complex with protein. In the absence of protein, neutralization of five appropriate phosphates increases DNA curvature to 32° (~23% increase), in the predicted direction. Shifting the placement of the neutralized phosphates changes the DNA shape, suggesting that sequence-directed DNA curvature can be modified by the asymmetry of phosphate neutralization. We suggest that asymmetric phosphate neutralization contributes favorably to DNA bending by CAP, but cannot account for the full DNA deformation.  相似文献   

5.
The DNA binding domain and bending angle of E. coli CAP protein   总被引:73,自引:0,他引:73  
  相似文献   

6.
Mitomycin C requires reductive activation to cross-link DNA and express anticancer activity. Reduction of mitomycin C (40 microm) by sodium borohydride (200 microm) in 20 mm Tris-HCl, 1 mm EDTA at 37 degrees C, pH 7.4, gives a 50-60% yield of the reactive intermediate mitomycin C hydroquinone. The hydroquinone decays with first order kinetics or pseudo first order kinetics with a t(12) of approximately 15 s under these conditions. The cross-linking of T7 DNA in this system followed matching kinetics, with the conversion of mitomycin C hydroquinone to leuco-aziridinomitosene appearing to be the rate-determining step. Several peroxidases were found to oxidize mitomycin C hydroquinone to mitomycin C and to block DNA cross-linking to various degrees. Concentrations of the various peroxidases that largely blocked DNA cross-linking, regenerated 10-70% mitomycin C from the reduced material. Thus, significant quantities of products other than mitomycin C were produced by the peroxidase-mediated oxidation of mitomycin C hydroquinone or products derived therefrom. Variations in the sensitivity of cells to mitomycin C have been attributed to differing levels of activating enzymes, export pumps, and DNA repair. Mitomycin C hydroquinone-oxidizing enzymes give rise to a new mechanism by which oxic/hypoxic toxicity differentials and resistance can occur.  相似文献   

7.
8.
Wu  Hong  Liu  Xiang-Qin 《Plant molecular biology》1997,34(2):339-343
The Guillardia theta chloroplast hlpA gene encodes a protein resembling bacterial histone-like protein HU. This gene was cloned and overexpressed in Escherichia coli cells, and the resulting protein product, HlpA, was purified and characterized in vitro. In addition to exhibiting a general DNA-binding activity, the chloroplast HlpA protein also strongly facilitated cyclization of a short DNA fragment in the presence of T4 DNA ligase, indicating its ability to mediate very tight DNA curvatures.  相似文献   

9.
DNA topoisomerases have been shown to cleave DNA phosphodiester bond and simultaneously become linked to the DNA at the cleavage site via a phosphotyrosine linkage (Tse, Y.-C., Kirkegaard, K., and Wang, J. C. (1980) J. Biol. Chem. 255, 5560-5565). For prokaryotic DNA topoisomerases, this is observed only when denaturant or protease is added to the topoisomerase-DNA incubation mixture. Previous attempts to reform DNA phosphodiester bonds from the covalent protein-DNA complex have been unsuccessful. Using oligonucleotides as substrates, the cleavage reaction of Escherichia coli DNA topoisomerase I occurs spontaneously (Tse-Dinh, Y.-C., McCarron, B. G. H., Arentzen, R., and Chowdhry, V. (1983) Nucleic Acids Res. 11, 8691-8701). Upon reaction with oligo(dA) labeled with 32P using terminal transferase and [alpha-32P]dATP, the enzyme becomes covalently linked to the 32P-labeled oligonucleotide. This 32P label can then be transferred to the 3'-OH end of a linear or nicked duplex DNA molecule subsequently added to the reaction mixture. This phosphodiester bond rejoining reaction can occur at a recessed, blunt, or protruding 3'-end of double-stranded DNA. It requires magnesium ions. These observations suggest that the covalent protein-DNA complex is a true intermediate during topoisomerization. Implications on the structure of prokaryotic type I DNA topoisomerases as compared to their eukaryotic counterparts are discussed.  相似文献   

10.
RNA polymerase was halted in consecutive registers of RNA synthesis ranging from registers 11 to 68. Non-denaturing gel electrophoresis shows that the mobility of the complexes varies (up to 15%), indicating that halted complexes differ in their conformation. The electrophoretic mobility changes with an approximate 10-register periodicity. The change of the mobility can be attributed to relative changes of RNA polymerase-induced bending angle. We suggest that the periodicity of the bending angle reflects periodic changes of the conformation of the halted complexes that might have relevance for the translocation mechanism.  相似文献   

11.
12.
H Heumann  M Ricchetti    W Werel 《The EMBO journal》1988,7(13):4379-4381
Escherichia coli RNA polymerase is shown to induce bending or an increased flexibility of the promoter DNA. This is a specific effect of holoenzyme (core enzyme and sigma-factor). The centre of the flexibility is 3 bp upstream of the initiation point of RNA synthesis. This flexibility or bending is maintained during RNA synthesis by core enzyme.  相似文献   

13.
14.
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.  相似文献   

15.
16.
17.
The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 A crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1-azaribose abasic nucleotide out of DNA and induces a 66 degrees bend in the DNA with a marked widening of the minor groove. The position of the 1-azaribose in the enzyme active site suggests an S(N)1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA-DNA complex offers the first glimpse of a helix-hairpin-helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner.  相似文献   

18.
Martin SS  Chu VC  Baldwin E 《Biochemistry》2003,42(22):6814-6826
Cre promotes recombination at the 34 bp LoxP sequence. Substitution of a critical C-G base pair in LoxP with an A-T base pair, to give LoxAT, reduced Cre binding in vitro and abolished recombination in vivo [Hartung, M., and Kisters-Woike, B. (1998) J. Biol. Chem. 273, 22884-22891].We demonstrated that LoxAT can be recombined in vitro. However, Cre discriminates against this substrate both before and after DNA binding. The preference for LoxP over LoxAT is the result of reduced binding and a slower turnover rate, amplified by changes in cooperativity of complex assembly. With LoxAT, similar levels of substrate turnover required 2-2.5-fold higher protein-DNA concentrations compared to LoxP, but the sigmoidal behavior of the concentration dependence was more pronounced. Further, the Cre-LoxAT complexes reacted 4-5-fold more slowly. In the 2.3 A resolution Cre-LoxAT complex structure, the major groove Arg259-guanine interaction was disrupted, explaining the reduced binding. Overall structural shifts and mobility changes indicate more favorable interactions between subunits, providing a hypothesis for the reduced turnover rate. Concomitant with the displacement of Arg259 from the DNA, adjacent charged residues Glu262 and Glu266 shifted to form salt bridges with the Arg259 guanidinium moiety. Substitution of Glu262 and Glu266 with glutamine increased Cre complex assembly efficiency and reaction rates with both LoxAT and LoxP, but diminished Cre's ability to distinguish them. The increased rate of this variant suggests that DNA substrate binding and turnover are coupled. The improved efficiency, made at some expense of sequence discrimination, may be useful for enhancing recombination in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号