首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using dual excitation and fixed emission fluorescence microscopy, we were able to measure changes in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and mitochondrial membrane potential simultaneously in the pancreatic beta-cell. The beta-cells were exposed to a combination of the Ca(2+) indicator fura-2/AM and the indicator of mitochondrial membrane potential, rhodamine 123 (Rh123). Using simultaneous measurements of mitochondrial membrane potential and [Ca(2+)](i) during glucose stimulation, it was possible to measure the time lag between the onset of mitochondrial hyperpolarization and changes in [Ca(2+)](i). Glucose-induced oscillations in [Ca(2+)](i) were followed by transient depolarizations of mitochondrial membrane potential. These results are compatible with a model in which nadirs in [Ca(2+)](i) oscillations are generated by a transient, Ca(2+)-induced inhibition of mitochondrial metabolism resulting in a temporary fall in the cytoplasmic ATP/ADP ratio, opening of plasma membrane K(ATP) channels, repolarization of the plasma membrane, and thus transient closure of voltage-gated L-type Ca(2+) channels.  相似文献   

3.
Based on the observation that potassium ions are compartmentalized near the surface of pancreatic beta-cells in mouse islets (Perez-Armendariz, E.M., I. Atwater, and E. Rojas 1985, Biophys. J. 48:741-749), we present a theoretical treatment of the effect of external potassium on oscillations in the pancreatic beta-cell. Our model includes the effects of ionic diffusion, the Ca2+-activated K+ channel, voltage-gated K+ and Ca2+ channels, and some of the effects of glucose. It is described by four ordinary differential equations. Numerical integration of these equations allows us to examine the effect of glucose, external K+, quinine, and tetraethylammonium ion (TEA) on the oscillations in membrane potential, intracellular Ca2+, and compartmentalized K+. The results are in good agreement with experiment.  相似文献   

4.
The cytoplasmic calcium concentration (Ca2+i) was measured in individual mouse pancreatic beta-cells loaded with fura-2 by recording the 340/380 nm fluorescence excitation ratio. An increase of the glucose concentration from 3 to 20 mM, caused initial lowering of Ca2+i followed by a rise with a peak preceding constant elevation at an intermediary level. However, at 11 mM glucose there were large Ca2+i oscillations with a frequency of 1 cycle per 2-6 min. The results indicate that both first and second phase secretion depend on elevated Ca2+i, and that many electrically coupled cells collectively determine the pace of rhythmic depolarization.  相似文献   

5.
A minimal model for calcium controlled oscillations is presented. The model considers only an exchange of potassium and calcium ions over the plasma membrane. Calcium ions leak into the cell through a potential dependent channel and is extruded by a pump. Potassium leaks out through a calcium dependent, but voltage independent, channel. The cytosolic calcium concentration is buffered, so a fixed fraction is free. Inactivation, membrane capacity, and time delays for the conductance changes are not included, so the time dependence is solely introduced through the temporal changes of the intracellular Ca(2+)-concentration. With continuous parameter changes the model can switch between five states: (1) a non-excitable, stable state; (2) single-spike excitability; (3) slow, spontaneous oscillations; (4) reverse-spike excitability; and (5) another non-excitable, stable state. One of the key parameters for this switching behavior is the rate constant for the calcium pump.  相似文献   

6.
7.
To clarify mechanism behind the abnormal glucose tolerance, observed in hyperthyroidism, we studied genomic and nongenomic effects of thyroid hormone on insulin secretion using a rat model of hyperthyroidism. Male Sprague-Dawley rats were intraperitoneally injected with vehicle, low (100 microg/kg) or high dose (600 microg/kg) of thyroxin (T(4)) for 2 weeks. Rats treated with high dose, but not low dose, of T(4), showed an increase in serum T(3) levels, and a decrease in body weight as compared to control rats. In rats treated with either dose of T(4), fasting blood glucose levels were increased, but serum insulin levels were similar to those of controls. After an oral glucose load, blood glucose levels were increased in rats treated with high dose, but not low dose, of T(4). Serum insulin levels after the oral glucose load were decreased in rats treated with either dose of T(4). After an intravenous glucose load, blood glucose levels were comparable among groups, but serum insulin levels tended to be low in T(4)-treated rats. Steady-state blood glucose levels were comparable among groups. The insulin secretory responses to high glucose (20mM) or arginine (10mM) of the isolated pancreas was decreased in rats treated with high dose, but not low dose, of T(4). Mean insulin secretory response to glucose and arginine were decreased by 40.1% and by 60.4% in high-dose-T(4)-treated rats. Addition of T(3) in the perfusion medium decreased glucose-induced insulin release. Ratios of proinsulin mRNA levels to beta-actin mRNA were decreased in the islets of T(4)-treated rats (0.45 +/- 0.07 vs control 0.61 +/- 0.03, p < 0.05). Levels of TR (thyroid hormone nuclear receptor) alpha1 + cErb Aalpha2 mRNA, but not TRbeta1, were decreased in the pancreatic islets of T(4)-treated rats. Calculated islet area was increased, but the number of beta-cells determined immunohistochemically was not increased in T(4)-treated rats, nor the volume density of insulin positive islets. We concluded that a deficient pancreatic beta-cell response to glucose, rather than insulin resistance, was responsible for abnormal glucose tolerance in this model of hyperthyroidism. Thyroid hormone causes a decrease in glucose-induced insulin secretion. We observed nongenomic and genomic effects of thyroid hormone on glucose-induced insulin secretion.  相似文献   

8.
9.
M S Jafri  S Vajda  P Pasik    B Gillo 《Biophysical journal》1992,63(1):235-246
Cytosolic calcium oscillations occur in a wide variety of cells and are involved in different cellular functions. We describe these calcium oscillations by a mathematical model based on the putative electrophysiological properties of the endoplasmic reticulum (ER) membrane. The salient features of our membrane model are calcium-dependent calcium channels and calcium pumps in the ER membrane, constant entry of calcium into the cytosol, calcium dependent removal from the cytosol, and buffering by cytoplasmic calcium binding proteins. Numerical integration of the model allows us to study the fluctuations in the cytosolic calcium concentration, the ER membrane potential, and the concentration of free calcium binding sites on a calcium binding protein. The model demonstrates the physiological features necessary for calcium oscillations and suggests that the level of calcium flux into the cytosol controls the frequency and amplitude of oscillations. The model also suggests that the level of buffering affects the frequency and amplitude of the oscillations. The model is supported by experiments indirectly measuring cytosolic calcium by calcium-induced chloride currents in Xenopus oocytes as well as cytosolic calcium oscillations observed in other preparations.  相似文献   

10.
Hormones and neurotransmitters that act through inositol 1,4,5-trisphosphate (IP3) can induce oscillations of cytosolic Ca2+ ([Ca2+]c), which render dynamic regulation of intracellular targets. Imaging of fluorescent Ca2+ indicators located within intracellular Ca2+ stores was used to monitor IP3 receptor channel (IP3R) function and to demonstrate that IP3-dependent oscillations of Ca2+ release and re-uptake can be reproduced in single permeabilized hepatocytes. This system was used to define the minimum essential components of the oscillation mechanism. With IP3 clamped at a submaximal concentration, coordinated cycles of IP3R activation and subsequent inactivation were observed in each cell. Cycling between these states was dependent on feedback effects of released Ca2+ and the ensuing [Ca2+]c increase, but did not require Ca2+ re-accumulation. [Ca2+]c can act at distinct stimulatory and inhibitory sites on the IP3R, but whereas the Ca2+ release phase was driven by a Ca2+-induced increase in IP3 sensitivity, Ca2+ release could be terminated by intrinsic inactivation after IP3 bound to the Ca2+-sensitized IP3R without occupation of the inhibitory Ca2+-binding site. These findings were confirmed using Sr2+, which only interacts with the stimulatory site. Moreover, vasopressin induced Sr2+ oscillations in intact cells in which intracellular Ca2+ was completely replaced with Sr2+. Thus, [Ca2+]c oscillations can be driven by a coupled process of Ca2+-induced activation and obligatory intrinsic inactivation of the Ca2+-sensitized state of the IP3R, without a requirement for occupation of the inhibitory Ca2+-binding site.  相似文献   

11.
Preincubation of rat islets of Langerhans with the potent inhibitors of islet transglutaminase activity, monodansylcadaverine (30-100 microM) and N-(5-aminopentyl)-2-naphthalenesulphonamide (100-200 microM), led to significant inhibition of glucose-stimulated insulin release from islets. In contrast, the respective N'-dimethylated derivatives of these two compounds, which did not inhibit islet transglutaminase activity, were much less effective as inhibitors of glucose-stimulated insulin release. None of the compounds inhibited rat spleen protein kinase C activity at concentrations which gave rise to inhibition of glucose-stimulated insulin release. When tested for their effects on calmodulin-stimulated bovine heart phosphodiesterase activity, of the compounds that inhibited insulin release, only monodansylcadaverine did not act as an effective antagonist of calmodulin at concentrations (up to 50 microM) that gave rise to significant inhibition of glucose-stimulated insulin release. Furthermore, at 50 microM, monodansylcadaverine did not inhibit methylation of islet lipids. The inhibition of glucose-stimulated insulin release by monodansylcadaverine is therefore likely to be attributable to its interference with islet transglutaminase activity. The sensitivity of islet transglutaminase to activation by Ca2+ was investigated by using a modified assay incorporating dephosphorylated NN'-dimethylcasein as a substrate protein. The Km for Ca2+ obtained (approx. 3 microM) was an order of magnitude lower than previously reported for the islet enzyme [Bungay, Potter & Griffin (1984) Biochem. J. 219, 819-827]. Mg2+ (2 mM) was found to have little effect on the sensitivity of the enzyme to Ca2+. Investigation of the endogenous substrate proteins of islet transglutaminase by using the Ca2+-dependent incorporation of [14C]methylamine into proteins of islet homogenates demonstrated that most of the incorporated radiolabel was present in cross-linked polymeric aggregates which did not traverse 3% (w/v) acrylamide gels. The radiolabelled polymeric aggregates were present in 71 000 g-sedimented material of homogenates, and their formation was transglutaminase-mediated. These findings provide new evidence for the involvement of islet transglutaminase in the membrane-mediated events necessary for glucose-stimulated insulin release.  相似文献   

12.
The pancreatic beta-cells respond to an increased glycolytic flux by secreting insulin. The signal propagation goes via mitochondrial metabolism, which relays the signal to different routes. One route is an increased ATP production that, via ATP-sensitive K(+) (K(ATP)) channels, modulates the cell membrane potential to allow calcium influx, which triggers insulin secretion. There is also at least one other "amplifying" route whose nature is debated; possible candidates are cytosolic NADPH production or malonyl-CoA production. We have used mathematical modeling to analyze this relay system. The model comprises the mitochondrial NADH shuttles and the mitochondrial metabolism. We found robust signaling toward ATP, malonyl-CoA, and NADPH production. The signal toward NADPH production was particularly strong. Furthermore, the model reproduced the experimental findings that blocking the NADH shuttles attenuates the signaling to ATP production while retaining the rate of glucose oxidation (Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T. Science 283: 981-985, 1999) and provides an explanation for this apparent paradox. The model also predicts that the mitochondrial malate dehydrogenase reaction may proceed backward, toward malate production, if the activity of malic enzyme is sufficiently high. An increased fatty acid oxidation rate was found to attenuate the signaling strengths. This theoretical study has implications for our understanding of both the healthy and the diabetic beta-cell.  相似文献   

13.
Insulin secretion is dependent on coordinated pancreatic islet physiology. In the present study, we found a way to overcome the limitations of cellular electrophysiology to optically determine cell membrane potential (Vm) throughout an islet by using a fast voltage optical dye pair. Using laser scanning confocal microscopy (LSCM), we observed fluorescence (Förster) resonance energy transfer (FRET) with the fluorescent donor N-(6-chloro-7-hydroxycoumarin-3-carbonyl)-dimyristoylphosphatidyl-ethanolamine and the acceptor bis-(1,3-diethylthiobarbiturate) trimethine oxonol in the plasma membrane of essentially every cell within an islet. The FRET signal was approximately linear from Vm –70 to +50 mV with a 2.5-fold change in amplitude. We evaluated the responses of islet cells to glucose and tetraethylammonium. Essentially, every responding cell in a mouse islet displayed similar time-dependent changes in Vm. When Vm was measured simultaneously with intracellular Ca2+, all active cells showed tight coupling of Vm to islet cell Ca2+ changes. Our findings indicate that FRET-based, voltage-sensitive dyes used in conjunction with LSCM imaging could be extremely useful in studies of excitation-secretion coupling in intact islets of Langerhans. pancreatic -cell; optical electrophysiology; islet electrical coupling  相似文献   

14.
A model membrane constructed from a Millipore filter, whose pores are filled with dioleyl phosphate molecules, exhibits a self-oscillation of the electric potential with a period of about a few seconds in the presence of a salt-concentration difference, pressure difference and/or electric current across the filter. In this paper, the effects of chemicals such as KCl, CaCl2, pH and sucrose on the self-oscillation are investigated experimentally. These chemical substances are shown to alter the characteristic properties as the frequency of oscillation. Theoretical consideration of electrochemical interaction between these substances and DOPH molecules gives a fairly good explanation of the observed results.  相似文献   

15.
16.
As a step towards an improved understanding of cardiac arrhythmias caused by abnormal automaticity, we perform a stability analysis of a Hodgkin-Huxley model of the myocardial cell membrane (modified Beeler-Reuter, MBR). The bifurcation structure of the model is obtained as a function of three parameters: the intensity of an applied constant current; the potassium equilibrium potential representing the accumulation of K+ ions in the external medium; and the maximum conductance of the slow inward current mimicking the local application of catecholamines on the membrane. For a range of parameter values, the model exhibits either stable automaticity or bistability between two quiescent states or between a quiescent state and an oscillatory state. These transformations of the bifurcation structure are shown to depend on the interrelationship between three elements: the activation of the slow inward current, the region of high slope conductance of the time-independent potassium current functions, and the slow variables controlling the activation of the potassium current and the inactivation of the slow inward current. Reduced two- and three-dimensional models are shown to reproduce the main stability properties of the full MBR model and to facilitate the understanding of its dynamic behavior. The onset of instability and the oscillatory features of the MBR model are in good agreement with relevant experimental results, and possible sources of disagreement on certain points are discussed.  相似文献   

17.
Mammalian beta-cells are acutely and chronically regulated by sensing surrounding glucose levels that determine the rate at which insulin is secreted, to maintain euglycemia. Experimental research in vitro and in vivo has shown that, when these cells are exposed to adverse conditions like long periods of hypoglycemia or hyperglycemia, their capability to sense glucose is decreased. Understanding the normal physiology and identifying the main players along this route becomes paramount. In this review, we have taken on the task of looking at the role that ion channels play in the regulation of this process, delineating the different families, and describing the signaling that parallels the glucose sensing process that results in insulin release.  相似文献   

18.
The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells attached, spread out, and proliferated into monolayers mainly consisting of insulin-containing cells. The number of beta-cells in S-phase was increased from 0.9-6.5% as determined by immunochemical staining of bromodeoxyuridine incorporated into insulin-positive cells. The increase in cell number was accompanied with a continuous increase in insulin release to the culture medium reaching a 10- 20-fold increase after 2-3 months with a half-maximal effect at about 10 ng/ml human GH. The biosynthesis of (pro)insulin was markedly increased with a normal rate of conversion of proinsulin to insulin. It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell.  相似文献   

19.
20.
A Sj?holm 《FEBS letters》1992,311(2):85-90
This review focuses on the factors that regulate the proliferation of pancreatic islet beta-cells in vitro, and in particular on the intracellular pathways that convey the mitogenic signal into a proliferative response. Substances as diverse as nutrients, polypeptides, cytokines, adrenergic agents, lithium, phorbol esters and cyclic AMP analogs are all able to stimulate or inhibit beta-cell proliferation in a time- and concentration-dependent manner. The evidence for involvement of cyclic AMP, cyclic GMP, protein kinase C, inositol polyphosphates, GTP-binding proteins, polyamines and oncogenes is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号