首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S Demas  S Wachtel 《Génome》1991,34(3):472-476
The simple tetranucleotide repeat GATA (GACA) occurs in all eukaryotes so far studied. In many species, the arrangement of these sequences varies considerably among individuals. Thus GATA (GACA) type probes produce DNA fingerprints when hybridized with restricted DNA from different individuals within a species. Banded krait minor (Bkm) satellite DNA (related to sequences originally recovered from the W chromosome of the banded krait and consisting essentially of a series of GATA repeats) is found in a wide spectrum of vertebrates and invertebrates. We used the Bkm 2(8) clone to evaluate the occurrence of this satellite in DNA from five species of Crocodilia and six species of Chelonia, including the sea turtles Chelonia mydas and Lepidochelys kempi. Well-resolved DNA fingerprints were obtained. Among the crocodilians, fewer restriction fragments were generated and fewer of the fragments were polymorphic, than among the chelonians, consistent with the view that the crocodilians are less divergent within species. The Bkm 2(8) clone can accordingly be used to advantage in individual, familial, and population studies, and perhaps in the evaluation of taxonomic relationships in these animals. This is of potential value in endangered species such as C. mydas and L. kempi.  相似文献   

2.
部分水产养殖动物性别控制基因的研究进展   总被引:3,自引:0,他引:3  
动物的性别是受遗传或环境等因素控制的。自从在哺乳动物中发现了性别决定基因SRY后,还发现了许多其他与性别控制和性腺发育相关的基因。由于海水养殖动物的性别控制技术在遗传育种和生产中十分重要,因此利用现代分子生物技术研究性别控制的基因成为热点。本文综述了鱼类、锯缘青蟹、海龟和海胆等水产养殖动物性别控制基因的研究进展。  相似文献   

3.
Since the discovery of the sex-determining gene, Sry, a number of genes have been identified which are involved in sex determination and gonadogenesis in mammals. Although Sry is known to be the testis-determining factor in mammals, this is not the case in non-mammalian vertebrates. Sox9 is another gene that has been shown to have a male-specific role in sex determination, but, unlike Sry, Sox9 has been shown to be involved in sex determination in mammals, birds, and reptiles. This is the first gene to be described that has a conserved role in sex determination in species with either chromosomal or environmental sex-determining mechanisms. Many reptiles do not have sex chromosomes but exhibit temperature-dependent sex determination (TSD). Sox9 has been shown to be expressed in both turtle and alligator during gonadogenesis. To determine if Sox9 also has a role in a gecko species with TSD, we studied gonadal expression of Sox9 during embryonic development of the Leopard gecko (Eublepharis macularius). Gecko Sox9 was found to be highly conserved at the nucleotide level when compared to other vertebrate species including human, chick, alligator, and turtle. Sox9 was found to be expressed in embryos incubated at the male-producing temperature (32.5 degrees C) as well as in embryos incubated at the female-producing temperatures (26 and 34 degrees C), Northern blot analysis showed that Sox9 was expressed at both temperatures from morphological stages 31 to 37. mRNA in situ hybridisation on isolated urogenital systems showed expression at both female- and male-producing temperatures up to stage 36. After this stage, no expression was seen in the female gonads but expression remained in the male. These data provide further evidence that Sox9 is an essential component of a testis-determining pathway that is conserved in species with differing sex-determining mechanisms.  相似文献   

4.
The W chromosome of the codling moth, Cydia pomonella, like that of most Lepidoptera species, is heterochromatic and forms a female-specific sex chromatin body in somatic cells. We collected chromatin samples by laser microdissection from euchromatin and W-chromatin bodies. DNA from the samples was amplified by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) and used to prepare painting probes and start an analysis of the W-chromosome sequence composition. With fluorescence in situ hybridization (FISH), the euchromatin probe labelled all chromosomes, whereas the W-chromatin DNA proved to be a highly specific W-chromosome painting probe. For sequence analysis, DOP-PCR-generated DNA fragments were cloned, sequenced, and tested by Southern hybridization. We recovered single-copy and low-copy W-specific sequences, a sequence that was located only in the W and the Z chromosome, multi-copy sequences that were enriched in the W chromosome but occurred also elsewhere, and ubiquitous multi-copy sequences. Three of the multi-copy sequences were recognized as derived from hitherto unknown retrotransposons. The results show that our approach is feasible and that the W-chromosome composition of C. pomonella is not principally different from that of Bombyx mori or from that of Y chromosomes of several species with an XY sex-determining mechanism. The W chromosome has attracted repetitive sequences during evolution but also contains unique sequences.  相似文献   

5.
Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature-dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species. The orders were also almost the same as those of the ostrich (Struthio camelus) Z chromosome, which retains the primitive state of the avian ancestral Z chromosome. These results strongly suggest that the X and Y chromosomes of Staurotypus turtles are at a very early stage of sex chromosome differentiation, and that these chromosomes and the avian ZW chromosomes share the same origin. Nonetheless, the turtles and birds acquired different systems of heterogametic sex determination during their evolution.  相似文献   

6.
7.
In amniotes, the banded krait minor (Bkm) minisatellite (GATA), the human telometric sequence (TTAGGG)7, and the Y-specific genes, ZFY and SRY, are associated with a particular sex. These sequences were studied in the channel catfish, Ictalurus punctatus. However, none was sex-specific in catfish; homologs of each were present in males and females. Our data suggest that components of mammalian sex-determining systems may be widespread and shared among the vertebrates in general. Whether those components are involved in sex determination in lower vertebrates or merely represent evolutionary precursors of sex-determining factors in amniotes remains to be determined.  相似文献   

8.
K. R. Rajyashri  L. Singh 《Chromosoma》1995,104(4):274-281
Y chromosome associated genes and repetitive sequences are continually viewed from the point of view of their possible involvement in sex determination and in the evolution of such a mechanism, thus sustaining an interest in the identification of novel sequences to gain newer insights. Here we have used the highly conserved class of Bkm repeats to isolate its associated sequences from the Y chromosome under the assumption that these sequences could be involved in sex determination and might also reflect the evolutionary status of the Y chromosome. Towards this end we have screened a genomic library enriched with human Y chromosome DNA with Bkm. One of the positive clones, C65, has a pericentromeric location on the Y chromosome and is present in a number of human sex-reversed XX males. The 10.5 kb insert of clone C65 has been further subcloned (pFI, pFII, pFIII, pFIV). The subclone pFIII is present in both sexes in human and mouse, whereas pFIV is primate specific and present in both sexes. pFII contains sequences homologous to Bkm. pFI is conserved in mouse and man, but is Y specific only in primates. Although present in both sexes in mouse, pFI is transcribed specifically in the male testis suggesting that it may be involved in the process of sex determination or testis differentiation and spermatogenesis.  相似文献   

9.
Traut W 《Genetics》1987,115(3):493-498
Bkm sequences, originally isolated from snake satellite DNA, are a component of eukaryote genomes with a preferential location on sex chromosomes. In the Ephestia genome, owing to the presence of only a few Bkm-positive BamHI restriction fragments and to extensive restriction fragment length polymorphisms between and within inbred strains, a genetic crossbreeding analysis was feasible. No sex linkage of Bkm was detected. Instead—depending on the strain—two or three autosomal Bkm DNA loci were identified. All three loci were located on different chromosomes. Fragment length and transmission of fragments was stable in some crosses. In others, changes in fragment length or loss of the Bkm component were observed, probably depending on the source strain of the fragment. The anomalous genetic behaviour is best accounted for by the assumption that Bkm sequences are included in mobile genetic elements.  相似文献   

10.
11.
Bkm satellite DNA and ZFY in the coral reef fish Anthias squamipinnis.   总被引:4,自引:0,他引:4  
S Wachtel  S Demas  T Tiersch  P Pechan  D Shapiro 《Génome》1991,34(4):612-617
We studied DNA from the protogynous sex-changing fish Anthias squamipinnis to evaluate the recent observation that male-specific bands are identified after hybridization with Bkm, a probe originating in the W chromosome of the snake Bungarus fasciatus. Sex-specific hybridization would imply modification of DNA structure during the sex-changing process. No sex-specific Bkm fragments were identified in our study, after digestion of DNA from 15 males and 11 adult females, despite the use of 12 different restriction enzymes. However, hybridization with Bkm did produce a distinct fingerprint pattern, similar to the fingerprint patterns described for other species after hybridization with GATA (GACA) type probes. In other experiments, the pDP1007 probe, which identifies the ZFY gene in the male-determining region of the human Y chromosome, generated identical hybridization patterns in DNA from males and females of A. squamipinnis and estimation of DNA mass by flow cytometry revealed identical genome sizes.  相似文献   

12.
Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA) to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA) for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas) foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1–113.1 pg/mL, males: 198.4–2,613.0 pg/mL) and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three ‘unknowns’ were female (> 0.86). Additionally, the model assigned all turtles with their correct sex (if determined at recapture) with 100% accuracy. Results indicated a female bias (2.83F:1M) among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate validation, ELISA sexing could be applied to other sea turtle species, and serve as a crucial conservation tool.  相似文献   

13.
Variability of genetic sex determination in poeciliid fishes   总被引:13,自引:4,他引:9  
Volff JN  Schartl M 《Genetica》2001,111(1-3):101-110
Poeciliids are one of the best-studied groups of fishes with respect to sex determination. They present an amazing variety of mechanisms, which span from simple XX-XY or ZZ-ZW systems to polyfactorial sex determination. The gonosomes of poeciliids generally are homomorphic, but very early stages of sex chromosome differentiation have been occasionally detected in some species. In the platyfish Xiphophorus maculatus, gene loci involved in melanoma formation, in different pigmentation patterns and in sexual maturity are closely linked to the sex-determining locus in the subtelomeric region of the X- and Y- chromosomes. The majority of traits encoded by these loci are highly polymorphic. This phenomenon might be explained by the high level of genomic plasticity apparently affecting the sex-determining region, where frequent rearrangements such as duplications, deletions, amplifications, and transpositions frequently occur. We propose that the high plasticity of the sex-determining region might explain the variability of sex determination in Xiphophorus and otherbreak poeciliids.  相似文献   

14.
Concentrations of total arsenic and individual arsenic compounds were determined in liver samples of pinnipeds (northern fur seal Callorhinus ursinus and ringed seal Pusa hispida), seabirds (black-footed albatross Diomedea nigripes and black-tailed gull Larus crassirostris) and sea turtles (hawksbill turtle Eretmochelys imbricata and green turtle Chelonia mydas). Among these species, the black-footed albatross contained the highest hepatic arsenic concentration (5.8+/-3.7 microg/g wet mass). Arsenobetaine was the major arsenic species found in the liver of all these higher tropic marine animals. To investigate the cause of high accumulation of arsenobetaine, subcellular distribution of arsenic and relationship between arsenobetaine and glycine betaine concentrations were examined in the livers of these animals. There was no relationship between total arsenic concentration and its subcellular distribution in liver tissues. However, a significant negative correlation was found between arsenobetaine and glycine betaine concentrations in the liver of six species examined. This result may indicate that arsenobetaine is accumulated in these marine animals as an osmolyte along with glycine betaine, which is a predominant osmolyte in marine animals because the chemical structure and properties of arsenobetaine are similar to those of glycine betaine.  相似文献   

15.
Although the sex-determining genes are known in mammals, Drosophila, and C. elegans, little is known in other animals. Fishes are an attractive group of organisms for studying the evolution of sex determination because they show an amazing variety of mechanisms, ranging from environmental sex determination and different forms of hermaphroditism to classical sex chromosomal XX/XY or WZ/ZZ systems and modifications thereof. In the fish medaka, dmrt1b(Y) has recently been found to be the candidate male sex-determining gene. It is a duplicate of the autosomal dmrt1a gene, a gene acting in the sex determination/differentiation cascade of flies, worms, and mammals. Because in birds dmrt1 is located on the Z-chromosome, both findings led to the suggestion that dmrt1b(Y) is a "non-mammalian Sry" with an even more widespread distribution. However, although Sry was found to be the male sex-determining gene in the mouse and some other mammalian species, in some it is absent and has obviously been replaced by other genes that now fulfil the same function. We have asked if the same might be true of the dmrt1b(Y) gene. We find that the gene duplication generating dmrt1b(Y) occurred recently during the evolution of the genus Oryzias. The gene is absent from all other fish species studied. Therefore, it may not be the male-sex determining gene in all fishes.  相似文献   

16.
A sex-determining gene, DMY, which is comparable to the SRY gene in mammals, has been identified in the medaka, Oryzias latipes. Although Oryzias curvinotus, a closely related species to O. latipes also has DMY, this gene has not been found in other Oryzias fishes. It has recently been demonstrated that the sex chromosomes of Oryzias dancena and Oryzias hubbsi differ from those of O. latipes and these species have XX/XY and ZZ/ZW systems, respectively. This may suggest that Oryzias species have evolved different sex-determining genes on different sex chromosomes. In the present study, we investigated the sex determination mechanism in Oryzias minutillus, which is closely related to O. dancena and O. hubbsi. Linkage analysis using 14 isolated sex-linked DNA markers showed that this species has an XX/XY sex determination system. These sex-linked markers were located on linkage group 8 of O. latipes, suggesting that the sex chromosomes of O. minutillus are homologous to the autosomes of other Oryzias species. Furthermore, fluorescence in situ hybridization using a tightly sex-linked marker demonstrated that the XY sex chromosomes of O. minutillus and O. dancena were not homologous. These findings provide additional evidence for independent origins of sex chromosomes and sex-determining genes in these closely related species.  相似文献   

17.
Sexual size dimorphism (SSD) is widespread in nature and may result from selection operating differentially on males and females. Rensch’s rule, the increase of SSD with body size in male-biased-SSD species (or decrease in female-biased-SSD species), is documented in invertebrates and vertebrates. In turtles, evidence for Rensch’s rule is inconclusive and thus the forces underlying body size evolution remain obscure. Using a phylogenetic approach on 138 turtle species from 9 families, we found that turtles overall and three families follow Rensch’s rule, five families display isometry of SSD with body size, while Podocnemididae potentially follows a pattern opposite to Rensch’s rule. Furthermore, male size evolves at faster rates than female size. Female-biased-SSD appears ancestral in turtles while male-biased-SSD evolved in every polytypic family at least once. Body size follows an Ornstein–Uhlenbeck evolutionary model in both sexes and SSD types, ruling out drift as a driving process. We explored whether habitat type or sex determination might be general drivers of turtle body size evolution using a phylogenetic context. We found that males are proportionally larger in terrestrial habitats and smaller in more aquatic habitats, while the sex-determining mechanism had no influence on body size evolution. Together, our data indicate that Rensch’s rule is not ubiquitous across vertebrates, but rather is prevalent in some lineages and not driven by a single force. Instead, our findings are consistent with the hypotheses that fecundity-selection might operate on females and ecological-selection on males; and that SSD and sex-determining mechanism evolve independently in these long-lived vertebrates.  相似文献   

18.
Laljl Singh  Kenneth W. Jones 《Cell》1982,28(2):205-216
Satellite DNA (Bkm) from the W sex-determining chromosome of snakes, which is related to sequences on the mouse Y chromosome, has been used to analyze the DNA and chromosomes of sex-reversed (Sxr) XXSxr male mice. Such mice exhibit a male-specific Southern blot Bkm hybridization pattern, consistent with the presence of Y-chromosome DNA. In situ hybridization of Bkm to chromosomes of XXSxr mice shows an aberrant concentration of related sequences on the distal terminus of a large mouse chromosome. The XYSxr carrier male, however, shows a pair of small chromosomes, which are presumed to be aberrant Y derivatives. Meiosis in the XYSxr mouse involves transfer of chromatin rich in Bkm-related DNA from the Y-Y1 complex to the X distal terminus. We suggest that this event is responsible for the transmission of the Sxr trait.  相似文献   

19.
Many sea turtle populations are below 10% of their pre-Columbian numbers [1-4]. Though historic and systematic over-exploitation is the principal cause of these declines, sea turtles face similar threats today. Adults and juveniles are actively hunted and commercial fisheries catch them incidentally. Nesting suffers from beach development, egg poaching and the poaching of nesting females. Accompanying these familiar hazards is the largely unknown consequences of recent climate change. Here we report monitoring surveys from the Dry Tortugas National Park (DTNP, 24.64N 82.86W), Florida, and show that hurricanes and other storm events are an additional and increasing threat to loggerhead turtle (Caretta caretta) and green sea turtle (Chelonia mydas) nesting. Both species are listed by the US Endangered Species Act and the IUCN considers them 'endangered'.  相似文献   

20.
Restriction-site analyses of mitochondrial DNA (mtDNA) from the loggerhead sea turtle (Caretta caretta) reveal substantial phylogeographic structure among major nesting populations in the Atlantic, Indian, and Pacific oceans and the Mediterranean sea. Based on 176 samples from eight nesting populations, most breeding colonies were distinguished from other assayed nesting locations by diagnostic and often fixed restriction-site differences, indicating a strong propensity for natal homing by nesting females. Phylogenetic analyses revealed two distinctive matrilines in the loggerhead turtle that differ by a mean estimated sequence divergence p = 0.009, a value similar in magnitude to the deepest intraspecific mtDNA node (p = 0.007) reported in a global survey of the green sea turtle Chelonia mydas. In contrast to the green turtle, where a fundamental phylogenetic split distinguished turtles in the Atlantic Ocean and the Mediterranean Sea from those in the Indian and Pacific oceans, genotypes representing the two primary loggerhead mtDNA lineages were observed in both Atlantic–Mediterranean and Indian-Pacific samples. We attribute this aspect of phylogeographic structure in Caretta caretta to recent interoceanic gene flow, probably mediated by the ability of this temperate-adapted species to utilize habitats around southern Africa. These results demonstrate how differences in the ecology and geographic ranges of marine turtle species can influence their comparative global population structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号