首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of protein fusion tag technology simplifies and facilitates purification of recombinant proteins. In this article, we have found that the starch-binding domain derived from Rhizopus oryzae glucoamylase (RoSBD), a member of carbohydrate-binding module family 21 (CBM21) with raw starch-binding activity, is favorable to be applied as an affinity tag for fusion protein engineering and purification in Escherichia coli and Pichia pastoris systems. To determine suitable spatial arrangement of RoSBD as a fusion handle, enhanced green fluorescent protein (eGFP) was fused to either the N- or C-terminus of the SBD, expressed by E. coli, and purified for yield assessment and functional analysis. Binding assays showed that the ligand-binding capacity was fully retained when the RoSBD was engineered at either the N-terminal or the C-terminal end. Similar results have been obtained with the RoSBD-conjugated phytase secreted by P. pastoris. The effective adsorption onto raw starch and low cost of starch make RoSBD practically applicable in terms of development of a new affinity fusion tag for recombinant protein engineering in an economic manner.  相似文献   

2.
Most of the glucoamylases (GA), which catalyze the hydrolysis of -1,4 and -1,6 glycosidic linkages, have a distinct region called a starch-binding domain (SBD). We have developed a powerful method for screening a library of GA mutants by a combination of GA display and SBD mutagenesis on the yeast-cell surface. In the case of Rhizopus oryzae glucoamylase (RoGA), three amino acids (63S, 71T, 73S) of the SBD were combinatorially mutated to enhance the degradation activity toward cooked corn starch and the mutated RoGAs were displayed on yeast-cell surface by cell-surface engineering. After the first screening by halo assay using an iodine-starch reaction, about 200 of the 8000 colonies formed clear halos. Incubation of the yeast with the mutated and displayed RoGAs caused direct degradation of cooked corn starch. Repeated screening revealed that some of the mutants produced a degradation rate around 1.4-fold higher than did wild type. The results obtained from the DNA sequences of the mutated SBDs indicated that amino-acid residues with a carbonyl group (D, E, Q, N) in the SBD enhance the degradation ability of the GA by enhancing the binding activity of the SBD.  相似文献   

3.
We have previously engineered a recombinant Pichia pastoris GS115 transformant, MSPGA-7, harboring seven copies of glucoamylase (GA) fused with modified signal peptide. High yield secretion of GA was achieved as an extra copy of SEC4 was integrated to the transformant. To elucidate the physiological role of SEC4, a dominant-negative mutant of SEC4, SEC4(S28N), was overexpressed under the control of alchohol oxidase 1 (AOX1) promoter in P. pastoris strain MSPGA-7 as well as a set of host cells harboring multi-copy of wild type SEC4. We found that SEC4(S28N) mutation in the key guanine nucleotide binding domain reduced guanine nucleotide binding affinity, hence it blocked the transport of vesicles required for targeting and fusion to the plasma membrane. The inhibitory levels of cell growth and GA secretion were correlated with the dosage of SEC4(S28N) gene. In addition, overexpression of SEC4 driven by AOX1 promoter in MSPGA-7 improved the secretory production of GA, but demonstrated the delay of cell growth by increased gene dosage of SEC4. Interestingly, a limited level of Sec4p did not disturb the cell growth. It was because expression of only one copy of SEC4 resulted in delay of cell growth at an early stage while still maintaining high level Sec4p at long-term incubation. Accordingly, as glyceraldehyde-3-phosphate dehydrogenase promoter was used to substitute AOX1 promoter to drive the SEC4 expression, enhanced GA secretion but not inhibition of cell growth was achieved. Taken together, our results demonstrate that SEC4 is essential for P. pastoris in regulating cell growth and heterologous protein secretion in a dosage-dependent manner.  相似文献   

4.
The crystal structures of the apo and mannose-bound Parkia platycephala seed lectin represent the first structure of a Mimosoideae lectin and a novel circular arrangement of beta-prism domains, and highlight the adaptability of the beta-prism fold as a building block in the evolution of plant lectins. The P.platycephala lectin is a dimer both in solution and in the crystals. Mannose binding to each of the three homologous carbohydrate-recognition domains of the lectin occurs through different modes, and restrains the flexibility of surface-exposed loops and residues involved in carbohydrate recognition. The planar array of carbohydrate-binding sites on the rim of the toroid-shaped structure of the P.platycephala lectin dimer immediately suggests a mechanism to promote multivalent interactions leading to cross-linking of carbohydrate ligands as part of the host strategy against phytopredators and pathogens. The cyclic structure of the P.platycephala lectin points to the convergent evolution of a structural principle for the construction of lectins involved in host defense or in attacking other organisms.  相似文献   

5.
6.
It has been shown previously that mutan can be co-synthesized with starch when a truncated mutansucrase (GtfICAT) is directed to potato tuber amyloplasts. The mutan seemed to adhere to the isolated starch granules, but it was not incorporated in the starch granules. In this study, GtfICAT was fused to the N- or C-terminus of a starch-binding domain (SBD). These constructs were introduced into two genetically different potato backgrounds (cv. Kardal and amf), in order to bring GtfICAT in more intimate contact with growing starch granules, and to facilitate the incorporation of mutan polymers in starch. Fusion proteins of the appropriate size were evidenced in starch granules, particularly in the amf background. The starches from the various GtfICAT/SBD transformants seemed to contain less mutan than those from transformants with GtfICAT alone, suggesting that the appended SBD might inhibit the activity of GtfICAT in the engineered fusion proteins. Scanning electron microscopy showed that expression of SBD-GtfICAT resulted in alterations of granule morphology in both genetic backgrounds. Surprisingly, the amf starches containing SBD-GtfICAT had a spongeous appearance, i.e., the granule surface contained many small holes and grooves, suggesting that this fusion protein can interfere with the lateral interactions of amylopectin sidechains. No differences in physico-chemical properties of the transgenic starches were observed. Our results show that expression of granule-bound and “soluble” GtfICAT can affect starch biosynthesis differently.  相似文献   

7.
Rat microtubule-associated protein light chain 3 (LC3) is a homologue of yeast Atg8, an essential component of autophagy. Following synthesis, the C-terminus of rat LC3 is cleaved by a cysteine protease-Atg4, to produce LC3-I, which is located in cytosolic fraction. LC3-I can be converted to LC3-II through the processing by Atg7 (E1-like enzyme) and Atg3 (E2-like enzyme). LC3-II is modified by phosphatidylethanolamine on C-terminus and binds tightly to autophagosomal membrane. Here we reported the cloning of two novel variants of rat LC3, named LC3A and LC3B, respectively, and LC3B is an alternative splicing variant of LC3. LC3A, LC3B, and LC3 showed different expression patterns in rat tissues, suggesting a functional divergence among these proteins. When LC3A and LC3B were overexpressed, both exhibited two forms (18 and 16 kDa, representing types of I and II, separately), which might be due to post-translational modification including the characteristic C-terminal cleavage at these two proteins as similar to that found in rat LC3 and yeast Atg8. Subcellular localization demonstrated that both LC3A and LC3B are colocalized with LC3 and associated with the autophagic membranes. Mutation analysis further revealed that the conserved Gly120 residues of LC3A and LC3B are essential for their characteristic C-terminal cleavage and localization to autophagic membranes. Present data suggested that LC3A and LC3B could also be used as two novel autophagosomal markers.  相似文献   

8.
Crystal structure and evolution of a prokaryotic glucoamylase   总被引:1,自引:0,他引:1  
The first crystal structures of a two-domain, prokaryotic glucoamylase were determined to high resolution from the clostridial species Thermoanaerobacterium thermosaccharolyticum with and without acarbose. The N-terminal domain has 18 antiparallel strands arranged in beta-sheets of a super-beta-sandwich. The C-terminal domain is an (alpha/alpha)(6) barrel, lacking the peripheral subdomain of eukaryotic glucoamylases. Interdomain contacts are common to all prokaryotic Family GH15 proteins. Domains similar to those of prokaryotic glucoamylases in maltose phosphorylases (Family GH65) and glycoaminoglycan lyases (Family PL8) suggest evolution from a common ancestor. Eukaryotic glucoamylases may have evolved from prokaryotic glucoamylases by the substitution of the N-terminal domain with the peripheral subdomain and by the addition of a starch-binding domain.  相似文献   

9.
10.
Human high affinity receptor for IgE is a membrane glycoprotein multichain complex presenting two extracellular Ig modules in its alpha-chain (D1D2). The receptor IgE binding region is located within the membrane-proximal module D2, while the N-terminal module D1 appears to promote an optimal receptor conformation for IgE binding. To understand the structural relationship between the two modules, we dissected FcepsilonRI alpha-chain into its discrete Ig units and expressed them in mammalian cells. Unexpectedly, D2 was secreted as a disulphide-linked dimer, while D1 was monomeric. Active secretion and full glycosylation of dimeric D2 suggest a native-like conformation of the protein, justifying the escape from the endoplasmic reticulum/Golgi quality control systems. We then propose a domain-swapping model for D2, in which two interdigitated polypeptide chains assume the overall conformation of two Ig modules, as observed for rat CD2 N-terminal domain. Fusion of an unrelated Ig fold moiety at the N terminus of D2 did not interfere with its dimerisation. While D1D2 assumes a correct fold, co-expression of both isolated domains in the same cell did not restore monomeric folding of D2. Thus, D1 appears to assist the appropriate folding of FcepsilonRI alpha-chain, acting as an uncleavable intramolecular chaperone-like block towards D2.  相似文献   

11.
In a screen for genes expressed in neural tissues and pronephroi, we isolated a novel gene, named dullard. Dullard protein contains the C-terminal conserved domain of NLI-IF (Nuclear LIM Interactor-Interacting Factor), a protein whose function is not yet characterized. Dullard mRNA was maternally derived and localized to the animal hemisphere. At neurula stages, the expression was in neural regions and subsequently localized to neural tissues, branchial arches, and pronephroi. Using antisense morpholino oligonucleotide-mediated inhibition, we showed that dullard was required for neural development. The translational knock-down of dullard resulted in failure of neural tube development and the embryos consequently showed a reduction of head development. Expression of neural marker genes in dullard-inhibited embryos was also suppressed. These results suggest that dullard is necessary for neural development.  相似文献   

12.
Mago nashi (Mago) and Y14 proteins, highly conserved among eukaryotes, participate in mRNA localization and splicing, and as such play important roles in oogenesis, embryogenesis and germ-line sex determination during animal development. Here we identified mago (Acmago) and Y14 (AcY14) homologues derived from Antrodia cinnamomea. Acmago encodes 149 amino acids and AcY14 encodes 168 amino acids. Multiple amino acid sequence alignment as well as secondary and tertiary structure prediction showed that AcMago and AcY14 have similar protein structure to the reported crystal structures of other Mago and Y14 proteins. During fungal development both Acmago and AcY14 genes were abundantly expressed in natural basidiomes. This is the first report of the molecular characterization and expression analysis of the mago and Y14 genes from fungi.  相似文献   

13.
Human Dicer contains two RNase III domains (RNase IIIa and RNase IIIb) that are responsible for the production of short interfering RNAs and microRNAs. These small RNAs induce gene silencing known as RNA interference. Here, we report the crystal structure of the C-terminal RNase III domain (RNase IIIb) of human Dicer at 2.0 Å resolution. The structure revealed that the RNase IIIb domain can form a tightly associated homodimer, which is similar to the dimers of the bacterial RNase III domains and the two RNase III domains of Giardia Dicer. Biochemical analysis showed that the RNase IIIb homodimer can cleave double-stranded RNAs (dsRNAs), and generate short dsRNAs with 2 nt 3′ overhang, which is characteristic of RNase III products. The RNase IIIb domain contained two magnesium ions per monomer around the active site. The distance between two Mg-1 ions is approximately 20.6 Å, almost identical with those observed in bacterial RNase III enzymes and Giardia Dicer, while the locations of two Mg-2 ions were not conserved at all. We presume that Mg-1 ions act as catalysts for dsRNA cleavage, while Mg-2 ions are involved in RNA binding.  相似文献   

14.
15.
16.
17.
Heteronuclear NMR spectroscopy was performed to determine the solution structure of (15)N-labeled ferrocytochrome c(3) from Desulfovibrio vulgaris Miyazaki F (DvMF). Although the folding of the reduced cytochrome c(3) in solution was similar to that of the oxidized one in the crystal structure, the region involving hemes 1 and 2 was different. The redox-coupled conformational change is consistent with the reported solution structure of D. vulgaris Hildenborough ferrocytochrome c(3), but is different from those of other cytochromes c(3). The former is homologous with DvMF cytochrome c(3) in amino acid sequence. Small displacements of hemes 1 and 2 relative to hemes 3 and 4 were observed. This observation is consistent with the unusual behavior of the 2(1)CH(3) signal of heme 3 reported previously. As shown by the (15)N relaxation parameters of the backbone, a region between hemes 1 and 2 has more flexibility than the other regions. The results of this work strongly suggest that the cooperative reduction of hemes 1 and 2 is based on the conformational changes of the C-13 propionate of heme 1 and the aromatic ring of Tyr43, and the interaction between His34 and His 35 through covalent and coordination bonds.  相似文献   

18.
Highly effective recombinant vaccines have been developed against Taenia ovis infection in sheep, Taenia saginata infection in cattle, Taenia solium infection in pigs, Echinococcus granulosus and Echinococcus multilocularis infections in a variety of intermediate host species. These vaccines have been based on the identification and expression in Escherichia coli of antigens derived from the oncosphere life cycle stage, contained within the parasites' eggs. Investigation of the molecular aspects of these proteins and the genes encoding them have revealed a number of common features, including the presence of a predicted secretory signal sequence, and one or two copies of a fibronectin type III domain, each encoded by separate exons within the associated gene. Evidence has been obtained to confirm glycosylation of some of these antigens. Ongoing investigations will shed light on the biological roles played by the proteins within the parasites and the mechanism by which they make the parasites vulnerable to vaccine-induced immune responses.  相似文献   

19.
Ribonuclease HIII (Bst-RNase HIII) from the moderate thermophile Bacillus stearothermophilus is a type 2 RNase H but shows poor amino acid sequence identity with another type 2 RNase H, RNase HII. It is composed of 310 amino acid residues and acts as a monomer. Bst-RNase HIII has a large N-terminal extension with unknown function and a unique active-site motif (DEDE), both of which are characteristics common to RNases HIII. To understand the role of these N-terminal extension and active-site residues, the crystal structure of Bst-RNase HIII was determined in both metal-free and metal-bound forms at 2.1-2.6 angstroms resolutions. According to these structures, Bst-RNase HIII consists of the N-terminal domain and C-terminal RNase H domain. The structures of the N and C-terminal domains were similar to those of TATA-box binding proteins and archaeal RNases HII, respectively. The steric configurations of the four conserved active-site residues were very similar to those of other type 1 and type 2 RNases H. Single Mn and Mg ions were coordinated with Asp97, Glu98, and Asp202, which correspond to Asp10, Glu48, and Asp70 of Escherichia coli RNase HI, respectively. The mutational studies indicated that the replacement of either one of these residues with Ala resulted in a great reduction of the enzymatic activity. Overproduction, purification, and characterization of the Bst-RNase HIII derivatives with N and/or C-terminal truncations indicated that the N-terminal domain and C-terminal helix are involved in substrate binding, but the former contributes to substrate binding more greatly than the latter.  相似文献   

20.
The present study was undertaken to analyse the capability of HIV-1 derived TAT protein transduction domain (PTD) fused with Green Fluorescent Protein (TAT-GFP) as a delivery vehicle into a range of protozoan parasites. Successful transduction of native purified TAT-GFP was observed by fluorescent microscopy in Cryptosporidium parvum, Giardia duodenalis, and Neospora caninum. The ability to transduce peptides and other cargo into protozoan parasites, will greatly assist in the delivery of future peptide-based drugs and target validation peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号