首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies describe new genome-wide mutagenesis strategies, coupled with phenotypic screening, and demonstrate the power of such approaches to provide new insights into the genetics of the immune response.  相似文献   

2.
3.
4.
5.
酸微菌是酸微菌纲(Acidimicrobiia)下所有菌的统称,广泛存在于酸性矿废水和海洋、湖泊、土壤、沙漠等环境,因其难培养、特殊的生理特性而受到特别的关注。酸微菌在酸性、中性和弱碱性环境中均有分布,一部分种属嗜酸、中度嗜热、可进行Fe2+氧化和Fe3+还原反应,具有矿石氧化和合成新型活性物质的能力,在生物浸矿与化学合成有潜在的应用价值;一部分种属存在于中性或弱碱性的土壤、沙漠和水体中,是该类环境中放线菌的优势种类。本文概述了酸微菌纲的建立和发展、酸微菌的系统发育、生物多样性与地理分布、主要生理特性、代谢途径、基因组研究等情况,并对酸微菌的应用前景和未来研究方向进行展望。  相似文献   

6.
Recent advances in neuro-immuno-modulation   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
Ubiquitin is a small 8.5 kDa protein that is conjugated to a target protein in a concerted three step enzymatic process. Ubiquitin addition can drastically affect function or target the modified protein for degradation. Ubiquitin modifications have important regulatory roles in disease progression, such as in cancer and neurodegenerative diseases to name a few. As a consequence, it is imperative to identify important ubiquitin targets to elucidate the role of the modification. Proteomic studies have sought to understand this role by identifying proteome-wide ubiquitylated proteins. Two central ideas have developed to characterize the ubiquitylome: affinity purification of ubiquitylated proteins and optimization of GG-peptide enrichment. In this review, we will discuss recent advances in both approaches and discuss how these studies are essential to pharmacoproteomics.  相似文献   

10.
11.
产甲烷古菌研究进展   总被引:20,自引:2,他引:20  
承磊  郑珍珍  王聪  张辉 《微生物学通报》2016,43(5):1143-1164
产甲烷古菌是一类严格厌氧的古菌,只能利用简单的化合物进行产甲烷生长。产甲烷古菌在地球生命起源和进化、全球气候变化、碳生物地球化学循环和农业废弃物资源化利用等领域,都起着至关重要的作用。系统了解产甲烷古菌的生物学特征,将有助于在这些基础和应用领域的研究工作。本文主要从生理生化特征、代谢途径、能量储存和系统分类等方面介绍产甲烷古菌的研究进展。  相似文献   

12.
13.

Introduction

In addition to the pivotal roles of mast cells in allergic diseases, recent data suggest that mast cells play crucial roles in a variety of autoimmune responses. However, their roles in the pathogenesis of autoimmune skeletal muscle diseases have not been clarified despite their distribution in skeletal muscle. Therefore, the objective of this study is to determine the roles of mast cells in the development of autoimmune skeletal muscle diseases.

Methods

The number of mast cells in the affected muscle was examined in patients with dermatomyositis (DM) or polymyositis (PM). The susceptibility of mast cell-deficient WBB6F1-KitW/KitWv mice (W/Wv mice) to a murine model of polymyositis, C protein-induced myositis (CIM), was compared with that of wild-type (WT) mice. The effect of mast cell reconstitution with bone marrow-derived mast cells (BMMCs) on the susceptibility of W/Wv mice to CIM was also evaluated.

Results

The number of mast cells in the affected muscle increased in patients with PM as compared with patients with DM. W/Wv mice exhibited significantly reduced disease incidence and histological scores of CIM as compared with WT mice. The number of CD8+ T cells and macrophages in the skeletal muscles of CIM decreased in W/Wv mice compared with WT mice. Engraftment of BMMCs restored the incidence and histological scores of CIM in W/Wv mice. Vascular permeability in the skeletal muscle was elevated in WT mice but not in W/Wv mice upon CIM induction.

Conclusion

Mast cells are involved in the pathogenesis of inflammatory myopathy.  相似文献   

14.
15.
16.
Spinosyn and its analogs, produced by Saccharopolyspora spinosa, are the active ingredients in a family of insect control agents. They are macrolides with a 21-carbon, 12-membered tetracyclic lactones that are attached to two deoxysugars, tri-O-methylrhamnose and forosamine. Labeling studies, analysis of the biosynthetically blocked mutants, and the genetic identification of the spinosyn gene cluster have provided detailed information concerning the mechanism of spinosyn biosynthesis and have enabled combinatorial biosynthesis of a large group of new spinosyns. The following developments have recently impacted the field of spinosyn biology: (1) A second-generation spinosyn called spinetoram (XDE-175) was launched in late 2007; it is a semisynthesized spinosyn derivative produced through the modification of 3′-O-methyl group of rhamnose and the double bond between C5 and C6 of spinosyn J and L. This molecule was shown to have improved insecticidal activity, enhanced duration of control, and an expanded pest spectrum. (2) A new class of spinosyns, the butenyl-spinosyns, was discovered from Saccharopolyspora pogona. The butenyl-spinosyns are similar to spinosyns, but differ in the length of the side chain at C-21. In addition to structural similarities with the spinosyns, the butenyl-spinosyns exhibit a high level of similarity in insecticidal activity to spinetoram. (3) Spinosyn analogs, 21-cyclobutyl-spinosyn A and 21-cyclobutyl-spinosyn D were generated by metabolic engineering of the spinosyn biosynthetic gene cluster. They showed better insecticidal activities against cotton aphid and tobacco budworm than that of spinosyn A and D. Future progress toward the development of more potent spinosad analogs, as well as enhancements in production yields will likely result from these recent advances in the genetics and biochemistry of spinosyns.  相似文献   

17.
Despite great progress in basic schizophrenia research, the conclusive identification of specific etiological factors or pathogenic processes in the illness has remained elusive. The convergence of modern neuroscientific studies in molecular genetics, molecular neuropathology, neurophysiology, in vivo brain imaging, and psychopharmacology, however, indicates that we may be coming much closer to understanding the molecular basis of schizophrenia. Schizophrenia may be a neurodevelopmental and progressive disorder with multiple biochemical abnormalities involving the dopaminergic, serotonin, glutamate, and gamma -aminobutyric acidergic systems. In the near future, biological markers for the illness may come from the combination of diverse assessment techniques. An understanding of the pathophysiology of schizophrenia will be essential to the discovery of preventive measures and therapeutic intervention. Rapidly advancing research into schizophrenia includes diverse etiological hypotheses, and offers directions for future research and treatments.  相似文献   

18.
19.
Clopidogrel has been used to prevent recurrent ischemic events after acute coronary syndrome and/or coronary stent implantation. An impaired platelet response to this drug (residual high platelet reactivity) has been identified as a risk factor for recurrent ischemic events. The platelet response to clopidogrel is highly heritable (73%) suggesting a substantial genetic component. Two sequential cytochrome P450-dependent oxidative steps are required to convert clopidogrel to its active metabolite. The first step leads to the formation of 2-oxo-clopidogrel, which is then metabolized to the active metabolite. Cytochrome P450s are large highly polymorphic family of mono-oxygenases. Many alleles have been reported, and some of these are able to modify the activity of proteins, reducing or increasing the concentration of active metabolites and the drug effect. Loss-of-function variants in the hepatic cytochrome 2C19 (mainly *2 allele) system have been found to be the predominant genetic mediators of clopidogrel response. Variant carriers have higher treatment platelet reactivity and higher risk of adverse cardiac events including stent thrombosis, myocardial infarction, and death. Although value of CYP2C19 genotyping has been demonstrated in ACS population treated with PCI, there is still a wide interindividual variability within each genotype to systematically advocate this genetic testing in clinical practice. The CYP2C19*2 variant only explained 12% of the platelet response to clopidogrel. In the near future, it is highly probable that additional gene variants or epigenetic phenomenon will emerge as significant contributors to clopidogrel response that will allow recommending genetic testing for routine use. The purpose of this review is to discuss the contribution of individual genetic differences responsible for variations of action and clopidogrel efficacy.  相似文献   

20.
It has been known for over 20 years that osteoporosis is highly influenced by genetic factors. Bone mineral density (BMD) has also been shown to be highly heritable. Other known risk factors for osteoporotic fractures such as reduced bone quality, femoral neck geometry and bone turnover are now also known to be heritable. Susceptibility to osteoporosis is mediated, in all likelihood, by multiple genes each having small effect. Different approaches are being used currently to identify the many genes responsible. These include linkage studies in man and experimental animals as well as candidate gene studies and alterations in gene expression. Linkage studies have identified multiple quantitative trait loci (QTL) for regulation of BMD and, with twin studies, have indicated that the effects of these loci are partly site-dependent and sex-specific. On the whole, the genes responsible for BMD regulation at these QTL have not yet been isolated. Most studies have used the candidate gene approach. The vitamin D receptor gene (VDR), the collagen type I alpha 1 gene (COLIA1) and estrogen receptor gene (ER) alpha have been most widely investigated and found to play a role in regulating BMD, but the effects are modest and together probably account for less than 5% of the heritable contribution to BMD. Genes may vary in their influence of particular intermediate phenotypes, and we now know that not all genes influencing BMD will be important in fracture. In addition, the study of other diseases such as osteoarthritis and metabolic bone syndromes may prove fruitful in highlighting genes which overlap to osteoporosis as well. As large scale genetic testing becomes more cost-effective, recent findings have illustrated the potential of novel approaches. These include combining large multi-national populations for candidate gene analysis, meta-analyses, DNA pooling studies and gene expression studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号