首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterioplankton plays a central role in the microbial functioning of lacustrine ecosystems; however, factors that constrain its structural variation are still poorly understood. Here we evaluated the driving forces exerted by a large set of environmental and biological parameters on the temporal and spatial dynamics of free-living bacterial community structures (BCS) in two neighboring perialpine lakes, Lake Bourget and Lake Annecy, which differ in trophic status. We analyzed monthly data from a 1-year sampling period at two depths situated in the epi- and hypolimnia for each lake. Overall, denaturing gradient gel electrophoresis (DGGE) revealed significant differences in the BCS in the two lakes, characterized by a higher number of bands in the oligotrophic ecosystem (i.e., Lake Annecy). The temporal dynamics of BCS differed greatly between depths and lakes, with temporal scale patterns being much longer in the mesotrophic Lake Bourget. Direct-gradient multivariate ordination analyses showed that a complex array of biogeochemical parameters was the driving force behind BCS shifts in both lakes. Our results indicated that 60 to 80% of the variance was explained only by the bottom-up factors in both lakes, indicating the importance of nutrients and organic matter from autotrophic origin in controlling the BCS. Top-down regulation by flagellates together with ciliates or viruses was found only in the hypolimnion and not in the epilimnion for both lakes and explained less than 18% of the bacterial community changes during the year. Our study suggests that the temporal dynamics of the free-living bacterial community structure in deep perialpine lakes are dependent mainly on bottom-up factors and to a lesser extent on top-down factors, whatever the specific environmental conditions of these lakes.  相似文献   

2.
We estimated the effect of invading Sasa vegetation and accelerated terrestrialization on the microbial community structure in Sarobetsu-genya wetland (SGW) and Nakanominedaira wetland (NW) (original vegetation, Sphagnum). All examined peat-pore water samples were acidic. Electrical conductivity significantly differed between SGW and NW. Nonmetric multidimensional scaling (NMDS) and analysis of similarity based on denaturing gradient gel electrophoresis (DGGE) band patterns revealed differences in the bacterial community structure between the Sasa and Sphagnum vegetations at a depth of 10 cm in NW. In contrast, the bacterial NMDS profiles at all depths differed between the 2 wetlands rather than between the 2 vegetations. The archaeal community structure significantly differed between the wetlands at depths of 30 and 50 cm. The bacterial diversity index derived from the DGGE profiles significantly differed between the wetlands at all depths. The archaeal diversity index significantly differed between the wetlands at a depth of 50 cm. Sasa invasion affected the microbial community structure in the rhizosphere, up to a depth of 10 cm; this effect differed with the terrestrialization speed. These results suggest that in peat bogs subjected to artificially accelerated terrestrialization, the microbial community changes before the occurrence of the natural hydrarch ecological succession involving ground vegetation.  相似文献   

3.
Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.  相似文献   

4.
Microbial activities that affect global oceanographic and atmospheric processes happen throughout the water column, yet the long-term ecological dynamics of microbes have been studied largely in the euphotic zone and adjacent seasonally mixed depths. We investigated temporal patterns in the community structure of free-living bacteria, by sampling approximately monthly from 5 m, the deep chlorophyll maximum (∼15–40 m), 150, 500 and 890 m, in San Pedro Channel (maximum depth 900 m, hypoxic below ∼500 m), off the coast of Southern California. Community structure and biodiversity (inverse Simpson index) showed seasonal patterns near the surface and bottom of the water column, but not at intermediate depths. Inverse Simpson''s index was highest in the winter in surface waters and in the spring at 890 m, and varied interannually at all depths. Biodiversity appeared to be driven partially by exchange of microbes between depths and was highest when communities were changing slowly over time. Meanwhile, communities from the surface through 500 m varied interannually. After accounting for seasonality, several environmental parameters co-varied with community structure at the surface and 890 m, but not at the intermediate depths. Abundant and seasonally variable groups included, at 890 m, Nitrospina, Flavobacteria and Marine Group A. Seasonality at 890 m is likely driven by variability in sinking particles, which originate in surface waters, pass transiently through the middle water column and accumulate on the seafloor where they alter the chemical environment. Seasonal subeuphotic groups are likely those whose ecology is strongly influenced by these particles. This surface-to-bottom, decade-long, study identifies seasonality and interannual variability not only of overall community structure, but also of numerous taxonomic groups and near-species level operational taxonomic units.  相似文献   

5.
6.
Spatial variations in the abundance and diversity of the free-living bacterioplankton community of a large Alpine lake, Lake Bourget (France), were investigated in the pelagic zone by means of two two-dimensional samplings taken in 2003. Lake-water samples were collected in winter during water mixing, and in early summer during stratification. The population abundance in each sample was determined by flow cytometry. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments from organisms measuring less than 2 mum was used to assess eubacterioplankton community composition. In winter, no obvious differences were observed in either the abundance or the diversity of the bacterial community, on either the horizontal or the vertical scales. The only influence detected was that of river water input, but this was at a very minor scale relative to the surface area of the lake. In early summer, changes were found in the community composition on the vertical scale related to the thermal stratification of the water column. There were also marked differences on the horizontal scale at 15 m depth due to internal waves. The implications of these findings for sampling strategies are very important from the perspective of comparative studies of free-living bacterial community diversity and functioning in large and deep lakes.  相似文献   

7.
Although in situ sediment capping is frequently used to reduce internal loading of contaminants and nutrients, post-application assessment rarely includes the potential undesirable short-term effects on plankton species composition. We hypothesised that a modified zeolite (Z2G1) application as a sediment capping agent in Lake Okaro, New Zealand, could cause significant undesirable shifts in species composition of both zooplankton and phytoplankton due to burial of resting stages or interference with feeding for the zooplankton. Alternatively, we predicted that the capping agent might have no effect due to, for example, the coarse grain size of the material (1–3 mm). We used multidimensional scaling (MDS) and analysis of similarity (ANOSIM) to identify any adverse effects of Z2G1 on zooplankton and phytoplankton species composition (i.e. shifts in community structure, including species loss) by comparing the community structure before and after the Z2G1 application. We found no significant differences in species composition before and after the Z2G1 application at the depths investigated (surface and 9 m). However, all of the analyses showed statistically significant differences among seasons, indicating seasonal variations in plankton composition far outweigh those that may have resulted from the Z2G1 application. Coarse particle size, low dose rate and a restricted area where the sediment capping agent was applied were considered to be the factors limiting potential adverse effects on plankton species. Considerations of finer-grained material to increase coverage and efficacy of phosphorus adsorption require assessment for their effects on zooplankton, however, and a direct mode of application into the hypolimnion is recommended to minimise effects on zooplankton and phytoplankton communities.  相似文献   

8.
Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter−1 of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter−1). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3-N, NO2-N, PO43−-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern.  相似文献   

9.
Interactions among microbes and stratification across depths are both believed to be important drivers of microbial communities, though little is known about how microbial associations differ between and across depths. We have monitored the free-living microbial community at the San Pedro Ocean Time-series station, monthly, for a decade, at five different depths: 5 m, the deep chlorophyll maximum layer, 150 m, 500 m and 890 m (just above the sea floor). Here, we introduce microbial association networks that combine data from multiple ocean depths to investigate both within- and between-depth relationships, sometimes time-lagged, among microbes and environmental parameters. The euphotic zone, deep chlorophyll maximum and 890 m depth each contain two negatively correlated ‘modules'' (groups of many inter-correlated bacteria and environmental conditions) suggesting regular transitions between two contrasting environmental states. Two-thirds of pairwise correlations of bacterial taxa between depths lagged such that changes in the abundance of deeper organisms followed changes in shallower organisms. Taken in conjunction with previous observations of seasonality at 890 m, these trends suggest that planktonic microbial communities throughout the water column are linked to environmental conditions and/or microbial communities in overlying waters. Poorly understood groups including Marine Group A, Nitrospina and AEGEAN-169 clades contained taxa that showed diverse association patterns, suggesting these groups contain multiple ecological species, each shaped by different factors, which we have started to delineate. These observations build upon previous work at this location, lending further credence to the hypothesis that sinking particles and vertically migrating animals transport materials that significantly shape the time-varying patterns of microbial community composition.  相似文献   

10.
Population dynamics of bacterioplankton in an oligotrophic lake   总被引:4,自引:0,他引:4  
The population ecology of bacterioplankton was studied overa 3 year period in Mirror Lake, an oligotrophic lake in thenortheastern USA. Bacterial population density, biomass, andrates of biomass production in the epilimnion and hypolimnionwere examined for their relationship with several environmentalparameters. Bacterioplankton density fluctuated between 0.5and 7 x l0 bacteria ml–1, with highest values in the anoxichypolimnion. At all depths there was a trend towards a higherdensity of bacteria from spring to midsummer, followed by adecline in late summer to early autumn. Cocci tended to dominatebacterial cell shapes from winter to midsummer, after whichrod-shaped cells became most abundant. Rod-shaped cells contributedthe most to bacterioplankton biomass at all depths and timesof year. The mean annual biovolume of all bacterioplankton was0.12 µ cell–1. The mean annual areal bacterioplanktonbiomass was 11–12 mmol C m–2. The percentage ofbacterial to phytoplankton biomass per volume in summertimewas 27% in the epilimnion and 11% in the hypolimnion. Averageannual and summertime bacterial production estimated using the[3H]thymidine method was similar to previous estimates of bacterialproduction measured in Mirror Lake using other methods. Theaverage ratio of bacterial to net phytoplankton production pervolume was 0.34 in the epilimnion, and between 0.65 and 1 1.depending on depth, in the hypolimnion during summer. Of severalvariables considered in regression analyses, only temperatureexplained >50% of the variance in bacterial production inboth the hypolimnion and epilimnion. Above 14°C, however,bacterial production and growth rate in the epilimnion werenot clearly related to temperature. During the period of midsummerhypolimnetic anoxia, despite colder temperatures in the hypolimnion,bacterial production was up to 10 times greater than in theepilimnion.  相似文献   

11.
The growth and viability of an anoxygenic, phototrophic bacterial community in the hypolimnion of Zaca Lake, Calif., were compared throughout the summer. The community is dominated by a single species, “Thiopedia rosea,” that inhabits the entire hypolimnion (6 to 8 m) for approximately 11 months. Suboptimal conditions in the hypolimnion (extremely low light intensity, high or low H2S levels) result in zero or extremely low growth rates (doubling times > 1 month) for most of the population, most of the time, yet cells remain viable and capable of high specific growth rates (doubling times of 1 to 10 days) when placed under favorable conditions (higher light intensities and temperatures). We first conclude that phototrophic bacterial populations in situ may frequently exist in a viable yet nongrowing state. Second, the viability of cells is likely to be reduced with depth owing to higher concentrations of potentially toxic chemicals and to changes in the physiological state associated with the prolonged periods of darkness commonly found at the bottom of bacterial plates.  相似文献   

12.
The homogeneity of the microbial community structure of a sediment landfill was examined by a culture-independent method and compared with physico-chemical parameters, i.e. organic matter, CaCO3 content, pH, and texture. Total genomic DNA was extracted from samples derived from different places and depths. After amplification with two different primer sets of partial bacterial 16S rRNA genes, the products were separated by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints of different sediment samples taken in regular patterns at the same depth were similar, which indicates a spatial homogeneity in the numerically dominant bacterial populations in a landfill over 10,000 m2 in size. In a vertical column of approx. 10 m, only some differences in a few bands of the bacterial community structure were observed between samples taken from different depths. This DNA homogeneity coincided with a similar homogeneity of the physico-chemical parameters in the landfill at this site. Nevertheless, the DGGE technique revealed small differences in less prominent bacteria and was capable of separating the upper and lower samples of one column into two clusters. It therefore seems more sensitive than the physico-chemical approach for characterising the homogeneity of an environmental habitat. Received: 4 August 1999 / Received revision: 2 December 1999 / Accepted: 3 December 1999  相似文献   

13.
Yuan Yang Lake (YYL), Taiwan, experiences both winter and typhoon-initiated mixing, and each type of mixing event is characterized by contrasting environmental conditions. Previous work suggested that after typhoon mixing, bacterial communities in YYL reset to a pioneer composition and then follow a predictable trajectory of change until the next typhoon. Our goal was to continue this investigation by observing bacterial community change after a range of mixing intensities, including seasonal winter mixing. We fingerprinted aquatic bacterial communities in the epilimnion and hypolimnion using automated ribosomal intergenic spacer analysis and then assessed community response using multivariate statistics. We found a significant linear relationship between water column stability and the epilimnion to hypolimnion divergences. In comparison to the summer, we found the winter community had a distinct composition and less variation. We divided the bacterial community into population subsets according to abundance (rare, common, or dominant) and occurrence (transient or persistent) and further explored the contribution of these subsets to the overall community patterns. We found that transient taxa did not drive bacterial community patterns following weak typhoon mixing events, but contributed substantially to patterns observed following strong events. Common taxa generally did not follow the community trajectory after weak or strong events. Our results suggest intensity, frequency, and seasonality jointly contribute to aquatic bacterial response to mixing disturbance.  相似文献   

14.
We analysed the long-term dynamics (1980–2007) of hypolimnetic and epilimnetic bacterial abundances and organic carbon concentrations, both dissolved (DOC) and particulate (POC), in the deep holo-oligomictic Lake Maggiore, included in the Southern Alpine Lakes Long-Term Ecological Research (LTER) site. During the 28 years of investigation, bacterial abundance and POC concentrations did not decrease with declining phosphorus concentrations, while DOC concentrations showed a pronounced decrease in the epi- and hypolimnion. We used the annual mean total lake heat content and total annual precipitation as climate-related variables, and in-lake total phosphorus as a proxy for trophic state. The model (forward stepwise regression, FSR) showed that reduced anthropogenic pressure was more significant than climate change in driving the trend in DOC concentrations. Bacterial dynamics in the hypolimnion mirrored the fluctuations observed in the epilimnion, but average cell abundance was three times lower. The FSR model indicates that bacterial number variability was dependent on POC in the epilimnion and DOC in the hypolimnion. In the hypolimnion, cell biovolumes for rod and coccal morphotypes were significantly larger than in the epilimnion.  相似文献   

15.
The structure and dynamics of small eukaryotes (cells with a diameter less than 5 μm) were studied over two consecutive years in an oligomesotrophic lake (Lake Pavin in France). Water samples were collected at 5 and 30 m below the surface; when the lake was stratified, these depths corresponded to the epilimnion and hypolimnion. Changes in small-eukaryote structure were analyzed using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the 18S rRNA genes. Terminal restriction fragments from clones were used to reveal the dominant taxa in T-RFLP profiles of the environmental samples. Spumella-like cells (Chrysophyceae) did not dominate the small eukaryote community identified by molecular techniques in lacustrine ecosystems. Small eukaryotes appeared to be dominated by heterotrophic cells, particularly Cercozoa, which represented nearly half of the identified phylotypes, followed by the Fungi-LKM11 group (25%), choanoflagellates (10.3%) and Chrysophyceae (8.9%). Bicosoecida, Cryptophyta, and ciliates represented less than 9% of the community studied. No seasonal reproducibility in temporal evolution of the small-eukaryote community was observed from 1 year to the next. The T-RFLP patterns were related to bottom-up (resources) and top-down (grazing) variables using canonical correspondence analysis. The results showed a strong top-down regulation of small eukaryotes by zooplankton, more exactly, by cladocerans at 5 m and copepods at 30 m. Among bottom-up factors, temperature had a significant effect at both depths. The concentrations of nitrogenous nutrients and total phosphorus also had an effect on small-eukaryote dynamics at 5 m, whereas bacterial abundance and dissolved oxygen played a more important structuring role in the deeper zone.  相似文献   

16.
We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates.  相似文献   

17.
Lake mixing disrupts chemical and physical gradients that structure bacterial communities. A transplant experiment was designed to investigate the influence of post‐mixing environmental conditions and biotic interactions on bacterial community composition. The experimental design was 3 × 2 factorial, where water was incubated from three different sources (epilimnion, hypolimnion, and mixed epilimnion and hypolimnion) at two different locations in the water column (epilimnion or hypolimnion). Three replicate mesocosms of each treatment were removed every day for 5 days for bacterial community profiling, assessed by automated ribosomal intergenic spacer analysis. There were significant treatment effects observed, and temperature was the strongest measured driver of community change (r = ?0.66). Epilimnion‐incubated communities changed more than hypolimnion‐incubated. Across all treatments, we classified generalist, layer‐preferential and layer‐specialist populations based on occurrence patterns. Most classified populations were generalists that occurred in both strata, suggesting that communities were robust to mixing. In a network analysis of the mixed‐inocula treatments, there was correlative evidence of inter‐population biotic interactions, where many of these interactions involved generalists. These results reveal differential responses of bacterial populations to lake mixing and highlight the role of generalist taxa in structuring an emergent community‐level response.  相似文献   

18.
The structure and dynamics of small eukaryotes (cells with a diameter less than 5 microm) were studied over two consecutive years in an oligomesotrophic lake (Lake Pavin in France). Water samples were collected at 5 and 30 m below the surface; when the lake was stratified, these depths corresponded to the epilimnion and hypolimnion. Changes in small-eukaryote structure were analyzed using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the 18S rRNA genes. Terminal restriction fragments from clones were used to reveal the dominant taxa in T-RFLP profiles of the environmental samples. Spumella-like cells (Chrysophyceae) did not dominate the small eukaryote community identified by molecular techniques in lacustrine ecosystems. Small eukaryotes appeared to be dominated by heterotrophic cells, particularly Cercozoa, which represented nearly half of the identified phylotypes, followed by the Fungi-LKM11 group (25%), choanoflagellates (10.3%) and Chrysophyceae (8.9%). Bicosoecida, Cryptophyta, and ciliates represented less than 9% of the community studied. No seasonal reproducibility in temporal evolution of the small-eukaryote community was observed from 1 year to the next. The T-RFLP patterns were related to bottom-up (resources) and top-down (grazing) variables using canonical correspondence analysis. The results showed a strong top-down regulation of small eukaryotes by zooplankton, more exactly, by cladocerans at 5 m and copepods at 30 m. Among bottom-up factors, temperature had a significant effect at both depths. The concentrations of nitrogenous nutrients and total phosphorus also had an effect on small-eukaryote dynamics at 5 m, whereas bacterial abundance and dissolved oxygen played a more important structuring role in the deeper zone.  相似文献   

19.
The prokaryote community activity and structural characteristics within marine sediment sampled across a continental shelf area located off eastern Antarctica (66°S, 143°E; depth range, 709 to 964 m) were studied. Correlations were found between microbial biomass and aminopeptidase and chitinase rates, which were used as proxies for microbial activity. Biomass and activity were maximal within the 0- to 3-cm depth range and declined rapidly with sediment depths below 5 cm. Most-probable-number counting using a dilute carbohydrate-containing medium recovered 1.7 to 3.8% of the sediment total bacterial count, with mostly facultatively anaerobic psychrophiles cultured. The median optimal growth temperature for the sediment isolates was 15°C. Many of the isolates identified belonged to genera characteristic of deep-sea habitats, although most appear to be novel species. Phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether analyses indicated that the samples contained lipid components typical of marine sediments, with profiles varying little between samples at the same depth; however, significant differences in PLFA profiles were found between depths of 0 to 1 cm and 13 to 15 cm, reflecting the presence of a different microbial community. Denaturing gradient gel electrophoresis (DGGE) analysis of amplified bacterial 16S rRNA genes revealed that between samples and across sediment core depths of 1 to 4 cm, the community structure appeared homogenous; however, principal-component analysis of DGGE patterns revealed that at greater sediment depths, successional shifts in community structure were evident. Sequencing of DGGE bands and rRNA probe hybridization analysis revealed that the major community members belonged to delta proteobacteria, putative sulfide oxidizers of the gamma proteobacteria, Flavobacteria, Planctomycetales, and Archaea. rRNA hybridization analyses also indicated that these groups were present at similar levels in the top layer across the shelf region.  相似文献   

20.
In a previous study (S. G. Acinas, F. Rodríguez-Valera, and C. Pedrós-Alió, FEMS Microbiol. Ecol. 24:27–40, 1997), community fingerprinting by 16S rDNA restriction analysis applied to Mediterranean offshore waters showed that the free-living pelagic bacterial community was very different from the bacterial cells aggregated or attached to particles of more than about 8 μm. Here we have studied both assemblages at three depths (5, 50, and 400 m) by cloning and sequencing the 16S rDNA obtained from the same samples, and we have also studied the samples by scanning electron microscopy to detect morphology patterns. As expected, the sequences retrieved from the assemblages were very different. The subsample of attached bacteria contained very little diversity, with close relatives of a well-known species of marine bacteria, Alteromonas macleodii, representing the vast majority of the clones at every depth. On the other hand, the free-living assemblage was highly diverse and varied with depth. At 400 m, close relatives of cultivated γ Proteobacteria predominated, but as shown by other authors, near the surface most clones were related to phylotypes described only by sequence, in which the α Proteobacteria of the SAR11 cluster predominated. The new technique of rDNA internal spacer analysis has been utilized, confirming these results. Clones representative of the A. macleodii cluster have been completely sequenced, producing a picture that fits well with the idea that they could represent a genus with at least two species and with a characteristic depth distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号