首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Balance function is dramatically deteriorated after exposure to microgravity. The purpose of the present study was to investigate the role and the contribution of different gravity sensory systems to the development of balance impairment after long-term spaceflights. Postural perturbations (pushes to the chest) of the threshold, medium, and sub-maximal intensities were produced in eight cosmonauts before, and on the day 3, 7, and 11 following spaceflight. Postural corrective responses were analyzed by anterior-posterior body sway fluctuation and electromyographic activity of leg muscles. The characteristics of the postural corrective responses changed significantly on the day 3 following spaceflight: the amplitude of posterior sway caused by perturbation of threshold intensity was increased reaching 135% ofpreflight value; the corrective responses lasted more than 6 s in 50% of all trials, while it did not last more than 4 s in 96% before spaceflight. The EMG responses were characterized by increased contribution of medium- and long-latency reactions. On the day 11 following spaceflight, most of the characteristics of postural corrective responses were close to preflight values. We assumed that the balance alterations after spaceflight are caused by changes in weightlessness of functions of two main gravity sensory systems, namely, weight-bearing and vestibular one. The deficit of weight-bearing afferentation triggers a decline of the extensors' muscle tone, while changes of vestibular function cause a decline of accuracy of postural corrections.  相似文献   

2.
To investigate to time course of sensory-motor adaptation to microgravity, we tested spatially-directed voluntary head movements before, during and after short spaceflight. We also tested the re-adaptation of postural responses to sensory stimulation after space flight. The cosmonaut performed in microgravity six cycles of voluntary head rotation in pitch, roll and yaw directions. During the first days of weightlessness the angular velocity of head movements increased. Over the next days of microgravity the velocity of head movements gradually decreased. On landing day a significant decrease of head rotation velocity was observed compared to the head movement velocity before spaceflight. Re-adaptation to Earth condition measured by body sway on soft support showed similar time course, but re-adaptation measured by postural responses to vestibular galvanic stimulation was prolonged. These results showed that the angular velocity of aimed head movements of cosmonauts is a good indicator of sensory-motor adaptation in altered gravity conditions.  相似文献   

3.
To study the effect of exercise and dehydration on the postural sensory-motor strategies, 10 sportsmen performed a 45 min-exercise on a cycle ergometer at intensity just below the ventilatory threshold without fluid intake. They performed, before, immediately and 20 min after exercise, a sensory organization test to evaluate balance control in six different sensory situations, that combine three visual conditions (eyes open, eyes closed and sway-referenced visual surround motion) with two platform conditions (stable platform, sway-referenced platform motion). Blood samples were collected before and after exercise. Exercise induced a mild dehydration, characterized by body mass loss and increase in proteinemia. Postural performances decreased immediately after exercise, mainly in the standard situation (eyes open, stable visual surround and platform) and when only the vestibular cue was reliable (eyes closed and sway-referenced platform). Moreover, the decreased use of vestibular input was correlated with the dehydration level. Finally, postural performances normalized 20 min after exercise. Even though muscular fatigue could explain the decrease in postural performances, vestibular fluid modifications may also be involved by its influence on the intralabyrinthine homeostasis, lowering thus the contribution of vestibular information on balance control.  相似文献   

4.
5.
The aim of our contribution was to characterize vestibular and somatosensory influence on human balance recovery during readaptation to the earth conditions after spaceflight. We tested how post-spaceflight postural reactions to galvanic stimulus (related to vestibular input) and to vibration of the lower leg muscles (somatosensory input) were changed.  相似文献   

6.
To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stable balance achieved through reliable visual or somatosensory cues, sway returned to normal. An equivalent galvanic stimulus unrelated to sway (not driven by head motion) was equally destabilising but in this situation the conditioning period of stable balance did not reduce sway. Reflex muscle responses evoked by an independent, higher bandwidth vestibular stimulus were initially reduced in amplitude by the galvanic stimulus but returned to normal levels after the conditioning period, contrary to predictions that they would decrease after adaptation to increased sensory gain and increase after adaptation to decreased sensory gain. We conclude that an erroneous vestibular signal of head motion during standing has profound effects on balance control. If it is unrelated to current head motion, the CNS has no immediate mechanism of ignoring the vestibular signal to reduce its influence on destabilising balance. This result is inconsistent with sensory reweighting based on disturbances. The increase in sway with increased sensory gain is also inconsistent with a simple feedback model of vestibular reflex action. Thus, we propose that recalibration of a forward sensory model best explains the reinterpretation of an altered reafferent signal of head motion during stable balance.  相似文献   

7.
Characteristic features of upright posture maintenance and mechanisms of postural disorders in poststroke hemiparetic patients were studied using a bilateral force platform. The following features of postural disorders were revealed in the patients tested: an increase in the velocity and amplitude of the center-of-pressure (CP) sway as compared to in healthy subjects, an absolute decrease in the half-cycles of the CP sway, asymmetry of weight bearing by both feet, and a shift of the center of pressure of an affected foot towards the toe. The disturbance of stability of the vertical posture in such patients is to a greater extent associated with weight-bearing asymmetry. It was shown that the character of the CP sway is mainly determined by a disorder of the sensory motor control, whereas damage to the efferent pathways is responsible for the postural asymmetry. Increase in the muscle tone restricts the sway amplitude. Thus, several forms of postural instability are characteristic of hemiparetic patients. Predominantly sensory, motor, or tonic disorders are responsible for these disturbances of stability.  相似文献   

8.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

9.
An adaptive estimator model of human spatial orientation is presented. The adaptive model dynamically weights sensory error signals. More specific, the model weights the difference between expected and actual sensory signals as a function of environmental conditions. The model does not require any changes in model parameters. Differences with existing models of spatial orientation are that: (1) environmental conditions are not specified but estimated, (2) the sensor noise characteristics are the only parameters supplied by the model designer, (3) history-dependent effects and mental resources can be modelled, and (4) vestibular thresholds are not included in the model; instead vestibular-related threshold effects are predicted by the model. The model was applied to human stance control and evaluated with results of a visually induced sway experiment. From these experiments it is known that the amplitude of visually induced sway reaches a saturation level as the stimulus level increases. This saturation level is higher when the support base is sway referenced. For subjects experiencing vestibular loss, these saturation effects do not occur. Unknown sensory noise characteristics were found by matching model predictions with these experimental results. Using only five model parameters, far more than five data points were successfully predicted. Model predictions showed that both the saturation levels are vestibular related since removal of the vestibular organs in the model removed the saturation effects, as was also shown in the experiments. It seems that the nature of these vestibular-related threshold effects is not physical, since in the model no threshold is included. The model results suggest that vestibular-related thresholds are the result of the processing of noisy sensory and motor output signals. Model analysis suggests that, especially for slow and small movements, the environment postural orientation can not be estimated optimally, which causes sensory illusions. The model also confirms the experimental finding that postural orientation is history dependent and can be shaped by instruction or mental knowledge. In addition the model predicts that: (1) vestibular-loss patients cannot handle sensory conflicting situations and will fall down, (2) during sinusoidal support-base translations vestibular function is needed to prevent falling, (3) loss of somatosensory information from the feet results in larger postural sway for sinusoidal support-base translations, and (4) loss of vestibular function results in falling for large support-base rotations with the eyes closed. These predictions are in agreement with experimental results. Received: 12 November 1999 / Accepted in revised form: 30 June 2000  相似文献   

10.
The aim of the present study was to determine the relative roles of genetic and environmental influences on postural balance in older women. The participants were 97 monozygotic (MZ) and 102 dizygotic (DZ) female twins, aged 64-76 yr. Postural sway was measured during side-by-side stance with eyes open and eyes closed, and during semitandem stance with eyes open on a force platform. Sway data were condensed into four first-order and one second-order latent factors. The second-order factor, named balance, incorporates sway data from multiple tests and thus best describes the phenotype of postural balance. The contribution of genetic and environmental influences on the variability of the latent factors was assessed by using structural equation modeling. Additive genetic influences accounted for 35% and shared environmental influences accounted for 24% of the total variance in the balance factor. In the present study, postural balance in older women had a moderate genetic component. Genetic influences on postural balance may be mediated through gene variation in the systems that control posture. The finding that individual environmental influences accounted for almost one-half of the variance in postural balance points to the potential of targeted interventions to maintain and improve balance control in older persons.  相似文献   

11.
The present study sought to determine if the postural sway of a subject required to grasp a tray (motor task) holding a cup filled with water and prevent spilling (mental task), would be reduced by consciously redirecting attention to maintain the tray in a horizontal position. We hypothesized the mental task would increase the stabilization of standing postural balance. Postural sway was measured in 17 normal subjects under the following conditions: 1) holding a 100 g weight in each hand (total 200 g; no mental task), 2) holding with both hands a tray on which 200 g was placed (tray-holding task), and 3) holding with both hands a tray on which a cup filled with water weighing 200 g was placed in the center (mental task). Postural sway was significantly reduced during the mental task versus other tasks. Standing posture balance was stabilized when a mental task was added. Thus, we concluded that higher brain functions such as attention and consciousness exerted a significant influence over the control of standing posture.  相似文献   

12.
Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.  相似文献   

13.
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure (COP) motion associated with arm movement of eight subjects who experienced long-duration spaceflight (3--6 mo) aboard the Mir space station. Surface electromyography, arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions before and after spaceflight. Subjects generally displayed compromised postural control after flight, as evidenced by modified COP peak-to-peak anterior-posterior and mediolateral excursion, and pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e., when subjects were attempting to maintain upright posture in response to self-generated perturbations). These findings suggest that, although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long-duration spaceflight.  相似文献   

14.
Motor dysfunction is a consistently reported but understudied aspect of schizophrenia. Postural sway area was examined in individuals with schizophrenia under four conditions with different amounts of visual and proprioceptive feedback: eyes open or closed and feet together or shoulder width apart. The nonlinear complexity of postural sway was assessed by detrended fluctuation analysis (DFA). The schizophrenia group (n = 27) exhibited greater sway area compared to controls (n = 37). Participants with schizophrenia showed increased sway area following the removal of visual input, while this pattern was absent in controls. Examination of DFA revealed decreased complexity of postural sway and abnormal changes in complexity upon removal of visual input in individuals with schizophrenia. Additionally, less complex postural sway was associated with increased symptom severity in participants with schizophrenia. Given the critical involvement of the cerebellum and related circuits in postural stability and sensorimotor integration, these results are consistent with growing evidence of motor, cerebellar, and sensory integration dysfunction in the disorder, and with theoretical models that implicate cerebellar deficits and more general disconnection of function in schizophrenia.  相似文献   

15.
 With galvanic vestibular stimulation (GVS), electrical current is delivered transcutaneously to the vestibular afferents through electrodes placed over the mastoid bones. This serves to modulate the continuous firing levels of the vestibular afferents, and causes a standing subject to lean in different directions depending on the polarity of the current. Our objective in this study was to test the hypothesis that the sway response elicited by GVS can be used to reduce the postural sway resulting from a mechanical perturbation. Nine subjects were tested for their postural responses to both galvanic stimuli and support-surface translations. Transfer-function models were fit to these responses and used to calculate a galvanic stimulus that would act to counteract sway induced by a support-surface translation. The subjects' responses to support-surface translations, without and with the stabilizing galvanic stimulus, were then measured. With the stabilizing galvanic stimulus, all subjects showed significant reductions in both sway amplitude and sway latency. Thus, with GVS, subjects maintained a more erect stance and followed the support-surface displacement more closely. These findings suggest that GVS could possibly form the basis for a vestibular prosthesis by providing a means through which an individual's posture can be systematically controlled. Received: 11 May 2000 / Accepted in revised form: 20 November 2000  相似文献   

16.
The CNS can precisely assess the spatial position of the human body only by simultaneously processing and integrating the visual, proprioceptive, and vestibular inputs. Postural stability data make it possible to estimate changes taking place in the function of analyzers involved in the maintenance of the upright posture. The vertical posture stability was assessed in healthy children and children with spastic diplegic cerebral palsy from their postural responses to the presentation of single optokinetic or somatosensory stimuli. The visual analyzer was found to play a significant role in maintaining the upright position under natural gravity conditions in healthy children. A single exposure of the proprioceptive system to variable forces directed with the gravity of the earth (vertical) decreased the contribution of the visual analyzer. Healthy children maintained the upright position relying on the direction of movement of the optokinetic stimuli, which, however, produced no effect on the maintenance of posture in the patients. A hypothesis is proposed that prenatal or early postnatal CNS lesions decrease the contribution of phylogenetically newer brain structures to the regulation of upright posture.  相似文献   

17.
Although the identification and characterization of limb load asymmetries during quiet standing has not received much research attention, they may greatly extend our understanding of the upright stance stability control. It seems that the limb load asymmetry factor may serve as a veridical measure of postural stability and thus it can be used for early diagnostic of the age-related decline in balance control. The effects of ageing and of vision on limb load asymmetry (LLA) during quiet stance were studied in 43 healthy subjects (22 elderly, mean age 72.3+/-4.0 yr, and 21 young, mean age 23.9+/-4.8 yr). Postural sway and body weight distribution were recorded while the subject was standing on two adjacent force platforms during two 120 s trials: one trial was performed with the eyes open (EO), while the other trial was with the eyes closed (EC). The results indicate that LLA was greater in the old adults when compared with the young control subjects. The LLA values were correlated with the postural sway magnitudes especially in the anteroposterior direction. Eyes closure which destabilized posture resulted in a significant increase of body weight distribution asymmetry in the elderly but not in the young persons. The limb load difference between EO and EC conditions showed a significantly greater effect of vision on LLA in the elderly compared to the young subjects. The observed differences in the LLA may be attributed to the decline of postural stability control in the elderly. Ageing results in the progressive decline of postural control and usually the nervous system requires more time to complete a balance recovery action. To compensate for such a deficiency, different compensatory strategies are developed. One of them, as evidenced in our study, is preparatory limb unload strategy (a stance asymmetry strategy) which could significantly shorten reaction time in balance recovery.  相似文献   

18.
Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20) or severe (n = 16) spine deformation were compared to those of healthy control adolescents (n = 16). Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes.  相似文献   

19.
Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN). Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control) and central-control (postural control using sensory cueing). DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2) and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2) with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, P<0.01), which suggests a compromised local-control balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, P<0.02), which suggests an adaptation mechanism to reduce the overall body sway in DPN patients. Interestingly, significant negative correlations were observed between central-control rate of sway with neuropathy severity (r Pearson = 0.65-085, P<0.05) and the history of diabetes (r Pearson = 0.58-071, P<0.05). Results suggest that in the lack of sensory feedback cueing, DPN participants were highly unstable compared to controls. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation mechanism using sensory feedback depends on the level of neuropathy and the history of diabetes.  相似文献   

20.
PurposePhysical and hormonal changes during pregnancy are thought to affect balance and injury risk, with increased numbers of falls being reported. A maternity support belt (MSB) has been suggested to stabilize the pelvis and to enhance balance. The purpose of this study was therefore to investigate the effect of an MSB on postural stability in different trimesters of pregnancy.MethodsPostural stability was assessed in the first (T1, n = 30), second (T2, n = 30) and third trimester (T3, n = 30) of pregnancy and compared to non-pregnant controls (n = 30), using a portable force plate. Postural sway during quiescent standing with and without applying an MSB was characterized by analyzing path length, velocity, amplitudes and area. Subsequently, anterior and posterior limits of stability (LoS) were determined.ResultsPostural sway during quiescent standing did not change with pregnancy. However, LoS performance was reduced already in T1, before body mass significantly increased. The MSB led to a small improvement in the LoS while slightly increasing postural sway in anterior-posterior direction and shifting the center of pressure posteriorly during quiescent standing.ConclusionWhile impairments in balance already occurred early in pregnancy before body mass significantly increased, they were subtle and only measurable in exacerbated conditions. This challenges the assumed necessity of balance enhancing interventions in pregnant women. Although the MSB significantly affected body posture, the magnitude of the LoS improvement using the MSB was very small. Thus, it remains debatable if the MSB is a meaningful tool to increase balance during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号