首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-eighthealthy women (ages 27.2 ± 6.4 yr) with widely varying fitnesslevels [maximal O2consumption (O2 max),31-70 ml · kg1 · min1]first completed a progressive incremental treadmill test to O2 max (totalduration, 13.3 ± 1.4 min; 97 ± 37 s at maximal workload), rested for 20 min, and then completed a constant-load treadmill test at maximal workload (total duration, 143 ± 31 s). Atthe termination of the progressive test, 6 subjects had maintained arterial PO2(PaO2) near resting levels, whereas 22 subjects showed a >10 Torr decrease inPaO2 [78.0 ± 7.2 Torr, arterial O2 saturation(SaO2), 91.6 ± 2.4%], andalveolar-arterial O2 difference (A-aDO2,39.2 ± 7.4 Torr). During the subsequent constant-load test, allsubjects, regardless of their degree of exercise-induced arterialhypoxemia (EIAH) during the progressive test, showed a nearly identicaleffect of a narrowed A-aDO2(4.8 ± 3.8 Torr) and an increase inPaO2 (+5.9 ± 4.3 Torr) andSaO2 (+1.6 ± 1.7%) compared with atthe end point of the progressive test. Therefore, EIAH during maximalexercise was lessened, not enhanced, by prior exercise, consistent withthe hypothesis that EIAH is not caused by a mechanismwhich persists after the initial exercise period and is aggravated bysubsequent exercise, as might be expected of exercise-inducedstructural alterations at the alveolar-capillary interface. Rather,these findings in habitually active young women point to a functionallybased mechanism for EIAH that is present only during the exerciseperiod.

  相似文献   

2.
Because sensitivity of equine pulmonary vasculature to endogenous as well as exogenous nitric oxide (NO) has been demonstrated, we examined whether endogenous NO production plays a role in exercise-induced arterial hypoxemia. We hypothesized that inhibition of NO synthase may alter the distribution of ventilation-perfusion mismatching, which may affect the exercise-induced arterial hypoxemia. Arterial blood-gas variables were examined in seven healthy, sound Thoroughbred horses at rest and during incremental exercise protocol leading to galloping at maximal heart rate without (control; placebo = saline) and with N(omega)-nitro-L-arginine methyl ester (L-NAME) administration (20 mg/kg iv). The experiments were carried out in random order, 7 days apart. At rest, L-NAME administration caused systemic hypertension, pulmonary hypertension, and bradycardia. During 120 s of galloping at maximal heart rate, significant arterial hypoxemia, desaturation of hemoglobin, hypercapnia, hyperthermia, and acidosis occurred in the control as well as in NO synthase inhibition experiments. However, statistically significant differences between the treatments were not found. In both treatments, exercise caused a significant rise in hemoglobin concentration, but the increment was significantly attenuated in the NO synthase inhibition experiments, and, therefore, arterial O(2) content (Ca(O(2))) increased to significantly lower values. These data suggest that, whereas L-NAME administration does not affect pulmonary gas exchange in exercising horses, it may affect splenic contraction, which via an attenuation of the rise in hemoglobin concentration and Ca(O(2)) may limit performance at higher workloads.  相似文献   

3.
Mechanism of exercise-induced hypoxemia in horses   总被引:1,自引:0,他引:1  
Arterial hypoxemia has been reported in horses during heavy exercise, but its mechanism has not been determined. With the use of the multiple inert gas elimination technique, we studied five horses, each on two separate occasions, to determine the physiological basis of the hypoxemia that developed during horizontal treadmill exercise at speeds of 4, 10, 12, and 13-14 m/s. Mean, blood temperature-corrected, arterial PO2 fell from 89.4 Torr at rest to 80.7 and 72.1 Torr at 12 and 13-14 m/s, respectively, whereas corresponding PaCO2 values were 40.3, 40.3, and 39.2 Torr. Alveolar-arterial PO2 differences (AaDO2) thus increased from 11.4 Torr at rest to 24.9 and 30.7 Torr at 12 and 13-14 m/s. In 8 of the 10 studies there was no change in ventilation-perfusion (VA/Q) relationships with exercise (despite bronchoscopic evidence of airway bleeding in 3) and total shunt was always less than 1% of the cardiac output. Below 10 m/s, the AaDO2 was due only to VA/Q mismatch, but at higher speeds, diffusion limitation of O2 uptake was increasingly evident, accounting for 76% of the AaDO2 at 13-14 m/s. Most of the exercise-induced hypoxemia is thus the result of diffusion limitation with a smaller contribution from VA/Q inequality and essentially none from shunting.  相似文献   

4.
It is reported that preexercise hyperhydration caused arterial O(2) tension of horses performing submaximal exercise to decrease further by 15 Torr (Sosa-Leon L, Hodgson DR, Evans DL, Ray SP, Carlson GP, and Rose RJ. Equine Vet J Suppl 34: 425-429, 2002). Because hydration status is important to optimal athletic performance and thermoregulation during exercise, the present study examined whether preexercise induction of hypervolemia would similarly accentuate the arterial hypoxemia in Thoroughbreds performing short-term high-intensity exercise. Two sets of experiments (namely, control and hypervolemia studies) were carried out on seven healthy, exercise-trained Thoroughbred horses in random order, 7 days apart. In resting horses, an 18.0 +/- 1.8% increase in plasma volume was induced with NaCl (0.30-0.45 g/kg dissolved in 1,500 ml H(2)O) administered via a nasogastric tube, 285-290 min preexercise. Blood-gas and pH measurements as well as concentrations of plasma protein, hemoglobin, and blood lactate were determined at rest and during incremental exercise leading to maximal exertion (14 m/s on a 3.5% uphill grade) that induced pulmonary hemorrhage in all horses in both treatments. In both treatments, significant arterial hypoxemia, desaturation of hemoglobin, hypercapnia, acidosis, and hyperthermia developed during maximal exercise, but statistically significant differences between treatments were not found. Thus preexercise 18% expansion of plasma volume failed to significantly affect the development and/or severity of arterial hypoxemia in Thoroughbreds performing maximal exercise. Although blood lactate concentration and arterial pH were unaffected, hemodilution caused in this manner resulted in a significant (P < 0.01) attenuation of the exercise-induced expansion of the arterial-to-mixed venous blood O(2) content gradient.  相似文献   

5.
The effect of exercise-induced arterial hypoxemia (EIAH) on quadriceps muscle fatigue was assessed in 11 male endurance-trained subjects [peak O2 uptake (VO2 peak) = 56.4 +/- 2.8 ml x kg(-1) x min(-1); mean +/- SE]. Subjects exercised on a cycle ergometer at >or=90% VO2 peak) to exhaustion (13.2 +/- 0.8 min), during which time arterial O2 saturation (Sa(O2)) fell from 97.7 +/- 0.1% at rest to 91.9 +/- 0.9% (range 84-94%) at end exercise, primarily because of changes in blood pH (7.183 +/- 0.017) and body temperature (38.9 +/- 0.2 degrees C). On a separate occasion, subjects repeated the exercise, for the same duration and at the same power output as before, but breathed gas mixtures [inspired O2 fraction (Fi(O2)) = 0.25-0.31] that prevented EIAH (Sa(O2) = 97-99%). Quadriceps muscle fatigue was assessed via supramaximal paired magnetic stimuli of the femoral nerve (1-100 Hz). Immediately after exercise at Fi(O2) 0.21, the mean force response across 1-100 Hz decreased 33 +/- 5% compared with only 15 +/- 5% when EIAH was prevented (P < 0.05). In a subgroup of four less fit subjects, who showed minimal EIAH at Fi(O2) 0.21 (Sa(O2) = 95.3 +/- 0.7%), the decrease in evoked force was exacerbated by 35% (P < 0.05) in response to further desaturation induced via Fi(O2) 0.17 (Sa(O2) = 87.8 +/- 0.5%) for the same duration and intensity of exercise. We conclude that the arterial O2 desaturation that occurs in fit subjects during high-intensity exercise in normoxia (-6 +/- 1% DeltaSa(O2) from rest) contributes significantly toward quadriceps muscle fatigue via a peripheral mechanism.  相似文献   

6.
The present study was carried out to examine theeffects of nitric oxide synthase inhibition withN-nitro-L-arginine methyl ester(L-NAME) on the right atrial as well as on the pulmonary arterial, capillary, and venous blood pressures of horses during rest and exercise performed at maximal heartrate (HRmax). Experiments werecarried out on seven healthy, sound, exercise-trained Thoroughbredhorses. Using catheter-tip manometers, with signals referenced at thepoint of the shoulder, we determined phasic and mean right atrial andpulmonary vascular pressures in two sets of experiments [control(no medications) and L-NAME (20 mg/kg iv given 10 min before exercise studies)]. The studies werecarried out in random order 7 days apart. Measurements were made atrest and during treadmill exercise performed on a 5% uphill grade at6, 8, and 14.2 m/s. Exercise on a 5% uphill grade at 14.2 m/s elicitedHRmax and could not be sustainedfor >90 s. In quietly standing horses,L-NAME administration caused asignificant rise in right atrial, as well as pulmonary arterial, capillary, and venous pressures. This indicates that nitric oxide synthase inhibition modifies the basal pulmonary vasomotor tone. Inboth treatments, exercise caused progressive significant increments inright atrial and pulmonary vascular pressures, but the values recordedin the L-NAME study were notdifferent from those in the control study. The extent ofexercise-induced tachycardia was significantly decreased in theL-NAME study at 6 and 8 m/s butnot at 14.2 m/s. Thus, L-NAMEadministration may not modify the equine pulmonary vascular tone duringexercise at HRmax. However, asindicated by a significant reduction in heart rate,L-NAME seems to modify thesympathoneurohumoral response to submaximal exercise.

  相似文献   

7.
The effect of warm-up exercise on energy metabolism and muscle glycogenolysis during sprint exercise (Spr) was examined in six fit Standardbred horses exercised at 115% of maximal O(2) consumption (VO(2 max)) until fatigued, 5 min after each of three protocols: 1) no warm-up (NWU); 2) 10 min at 50% of VO(2 max) [low-intensity warm-up (LWU)]; and 3) 7 min at 50% VO(2 max) followed by 45-s intervals at 80, 90, and 100% VO(2 max) [high-intensity warm-up (HWU)]. Warm-up increased (P < 0.0001) muscle temperature (T(m)) at the onset of Spr in LWU (38.3 +/- 0.2 degrees C) and HWU (40.0 +/- 0. 3 degrees C) compared with NWU (36.6 +/- 0.2 degrees C), and the rate of rise in T(m) during Spr was greater in NWU than in LWU and HWU (P < 0.01). Peak VO(2) was higher and O(2) deficit lower (P < 0. 05) when Spr was preceded by warm-up. Rates of muscle glycogenolysis were lower (P < 0.05) in LWU, and rates of blood and muscle lactate accumulation and anaerobic ATP provision during Spr were lower in LWU and HWU compared with NWU. Mean runtime (s) in LWU (173 +/- 10 s) was greater than HWU (142 +/- 11 s) and NWU (124 +/- 4 s) (P < 0. 01). Warm-up was associated with augmentation of aerobic energy contribution to total energy expenditure, decreased glycogenolysis, and longer run time to fatigue during subsequent sprint exercise, with no additional benefit from HWU vs. LWU.  相似文献   

8.
9.
In view of the suggestion that pulmonary injury-induced release of histamine and/or other chemical mediators from airway inflammatory and mast cells contribute to the exercise-induced arterial hypoxemia (EIAH) in human athletes, we examined the effects of pretreatment with a potent anti-inflammatory agent, dexamethasone, on EIAH and desaturation of hemoglobin in horses. Seven healthy, sound, exercise-trained Thoroughbreds were studied in the control (no medications) experiments, followed in 7 days by intravenous dexamethasone (0.11 mg.kg(-1).day(-1) for 3 consecutive days) studies. Blood-gas measurements were made at rest and during incremental exercise leading to maximal exertion at 14 m/s on a 3.5% uphill grade. Galloping at this workload induced pulmonary hemorrhage in all horses in both treatments, thereby indicating that stress failure of pulmonary capillaries had occurred. In both treatments, significant EIAH, desaturation of hemoglobin, hypercapnia, acidosis, and hyperthermia developed during maximal exercise, but significant differences between the control and dexamethasone treatments were not discerned. The failure of pretreatment with dexamethasone to significantly affect EIAH suggests that pulmonary injury-evoked airway inflammatory response may not play a major role in EIAH in racehorses. However, our observations in both treatments that EIAH developed quickly (being evident at 30 s of exertion) and that its severity remained unaffected by increasing exercise duration (to 120 s) suggest that EIAH has a functional basis, probably related to significant shortening of the transit time for blood in the pulmonary capillaries as cardiac output increases dramatically.  相似文献   

10.
A recent bout of high-intensity exercise can alter the balance of aerobic and anaerobic energy provision during subsequent exercise above the lactate threshold (theta(L)). However, it remains uncertain whether such "priming" influences the tolerable duration of subsequent exercise through changes in the parameters of aerobic function [e.g., theta(L), maximum oxygen uptake (Vo(2max))] and/or the hyperbolic power-duration (P-t) relationship [critical power (CP) and the curvature constant (W')]. We therefore studied six men performing cycle ergometry to the limit of tolerance; gas exchange was measured breath-by-breath and arterialized capillary blood [lactate] was measured at designated intervals. On different days, each subject completed 1) an incremental test (15 W/min) for estimation of theta(L) and measurement of the functional gain (DeltaVo(2)/DeltaWR) and Vo(2peak) and 2) four constant-load tests at different work rates (WR) for estimation of CP, W', and Vo(2max). All tests were subsequently repeated with a preceding 6-min supra-CP priming bout and an intervening 2-min 20-W recovery. The hyperbolicity of the P-t relationship was retained postpriming, with no significant difference in CP (241 +/- 39 vs. 242 +/- 36 W, post- vs. prepriming), Vo(2max) (3.97 +/- 0.34 vs. 3.93 +/- 0.38 l/min), DeltaVo(2)/DeltaWR (10.7 +/- 0.3 vs. 11.1 +/- 0.4 ml.min(-1).W(-1)), or the fundamental Vo(2) time constant (25.6 +/- 3.5 vs. 28.3 +/- 5.4 s). W' (10.61 +/- 2.07 vs. 16.13 +/- 2.33 kJ) and the tolerable duration of supra-CP exercise (-33 +/- 11%) were each significantly reduced, despite a less-prominent Vo(2) slow component. These results suggest that, following supra-CP priming, there is either a reduced depletable energy resource or a residual fatigue-metabolite level that leads to the tolerable limit before this resource is fully depleted.  相似文献   

11.
It is uncertain that exercise with reduced frequency breathing (RFB) results in arterial hypoxemia. This study was designed to investigate whether RFB during exercise creates a true hypoxic condition in arterial blood by examining arterial oxygen saturation (SaO2) directly. Six subjects performed ten 30 s periods of exercise on a Monark bicycle ergometer at a work rate of 210 W alternating with 30 s rest intervals. The breath was controlled to use 1 s each for inspiration and expiration, and two trials with different breathing patterns were used; a continuous breathing (CB) trial and an RFB trial consisting of four seconds of breath-holding at functional residual capacity (FRC). Alveolar oxygen pressure during exercise showed a slight but significant (p less than 0.05) reduction with RFB as compared to CB. However, a marked increase in alveolar-arterial pressure difference for oxygen (A-aDO2) (p less than 0.05) with RFB over CB resulted in a marked (p less than 0.05) reduction in arterial oxygen pressure. Consequently, SaO2 fell as low as 88.8% on average. Additional examination of RFB with breath-holding at total lung capacity showed no increases in A-aDO2 in spite of the same amount of hypoventilation as compared with that at FRC. These results indicate that RFB during exercise can result in arterial hypoxemia if RFB is performed with breath-holding at FRC, this mechanism being closely related to the mechanical responses due to lung volume restriction.  相似文献   

12.
We examined whether lung inflammatory mediators are increased during exercise and whether pharmacological blockade can prevent exercise-induced arterial hypoxemia (EIAH) in young athletes. Seventeen healthy athletes (9 men, 8 women; age 23 +/- 3 yr) with varying degrees of EIAH completed maximal incremental treadmill exercise tests after administration of fexofenadine, zileuton, and nedocromil sodium or placebo in a randomized double-blind crossover study. Lung function, arterial blood gases, and inflammatory metabolites in plasma, urine, and induced sputum were assessed. Drug administration did not improve EIAH or gas exchange during exercise. At maximal exercise, oxygen saturation fell to 91.4 +/- 2.6% (drug trial) and 91.9 +/- 2.1% (placebo trial) and alveolar-arterial oxygen difference widened to 28.1 +/- 6.3 Torr (drug trial) and 29.3 +/- 5.7 Torr (placebo trial). Oxygen consumption, ventilation, and other exercise variables were similarly unaffected by drug treatment. Although plasma histamine increased with exercise, values did not differ between trials, and urinary leukotriene E(4) and 11beta-prostaglandin F(2alpha) levels were unchanged after exercise. Postexercise sputum revealed no significant changes in markers of inflammation. These results demonstrate that EIAH in young athletes is not attenuated with acute administration of drugs targeting histamine and bioactive lipids. We conclude that airway inflammation is of insufficient magnitude to cause impairments in gas exchange and does not appear to be linked to EIAH in healthy young athletes.  相似文献   

13.
This study examined whether the increase in histamine release (%H, i.e., plasma histamine expressed as a percentage of whole blood histamine) associated with exercise-induced hypoxemia (EIH) is related to high training-induced changes in basophil and osmolarity factors in arterial blood. All parameters were measured in 20 endurance athletes, 11 of whom presented an EIH (HT(hyp)) and 9 of whom were nonhypoxemic (HT(nor)), and in 10 untrained control subjects (UT). Measurements were made at rest, at the maximal workload of an incremental exhaustive exercise test, and at the fifth minute of recovery. %H increased during exercise in HT(hyp) (P < 0.01) but did not increase significantly in HT(nor) and UT controls. The results indicated that 1) osmolarity and Na(+) and K(+) concentrations did not differ between the two trained groups and 2) the basophil count and basophil histamine content did not differ among groups. We concluded that the %H increase associated with EIH was not due to a training effect on these parameters. The relatively low increase in histamine content during exercise in HT(hyp) in comparison to HT(nor) (P < 0.05) and UT (P < 0.01) and the low recovery vs. resting basophil count only in HT(hyp) (P < 0.01) suggested an accentuated exercise-induced basophil degranulation in the hypoxemic athletes.  相似文献   

14.
Exercise-induced arterial hypoxemia.   总被引:7,自引:0,他引:7  
Exercise-induced arterial hypoxemia (EIAH) at or near sea level is now recognized to occur in a significant number of fit, healthy subjects of both genders and of varying ages. Our review aims to define EIAH and to critically analyze what we currently understand, and do not understand, about its underlying mechanisms and its consequences to exercise performance. Based on the effects on maximal O(2) uptake of preventing EIAH, we suggest that mild EIAH be defined as an arterial O(2) saturation of 93-95% (or 3-4% 25-30 Torr) and inadequate compensatory hyperventilation (arterial PCO(2) >35 Torr) commonly contribute to EIAH, as do acid- and temperature-induced shifts in O(2) dissociation at any given arterial PO(2). In turn, expiratory flow limitation presents a significant mechanical constraint to exercise hyperpnea, whereas ventilation-perfusion ratio maldistribution and diffusion limitation contribute about equally to the excessive A-a DO(2). Exactly how diffusion limitation is incurred or how ventilation-perfusion ratio becomes maldistributed with heavy exercise remains unknown and controversial. Hypotheses linked to extravascular lung water accumulation or inflammatory changes in the "silent" zone of the lung's peripheral airways are in the early stages of exploration. Indirect evidence suggests that an inadequate hyperventilatory response is attributable to feedback inhibition triggered by mechanical constraints and/or reduced sensitivity to existing stimuli; but these mechanisms cannot be verified without a sensitive measure of central neural respiratory motor output. Finally, EIAH has detrimental effects on maximal O(2) uptake, but we have not yet determined the cause or even precisely identified which organ system, involved directly or indirectly with O(2) transport to muscle, is responsible for this limitation.  相似文献   

15.
The causes of exercise-induced hypoxemia (EIH) remain unclear. We studied the mechanisms of EIH in highly trained cyclists. Five subjects had no significant change from resting arterial PO(2) (Pa(O(2)); 92.1 +/- 2.6 Torr) during maximal exercise (C), and seven subjects (E) had a >10-Torr reduction in Pa(O(2)) (81.7 +/- 4.5 Torr). Later, they were studied at rest and during various exercise intensities by using the multiple inert gas elimination technique in normoxia and hypoxia (13.2% O(2)). During normoxia at 90% peak O(2) consumption, Pa(O(2)) was lower in E compared with C (87 +/- 4 vs. 97 +/- 6 Torr, P < 0.001) and alveolar-to-arterial O(2) tension difference (A-aDO(2)) was greater (33 +/- 4 vs. 23 +/- 1 Torr, P < 0. 001). Diffusion limitation accounted for 23 (E) and 13 Torr (C) of the A-aDO(2) (P < 0.01). There were no significant differences between groups in arterial PCO(2) (Pa(CO(2))) or ventilation-perfusion (VA/Q) inequality as measured by the log SD of the perfusion distribution (logSD(Q)). Stepwise multiple linear regression revealed that lung O(2) diffusing capacity (DL(O(2))), logSD(Q), and Pa(CO(2)) each accounted for approximately 30% of the variance in Pa(O(2)) (r = 0.95, P < 0.001). These data suggest that EIH has a multifactorial etiology related to DL(O(2)), VA/Q inequality, and ventilation.  相似文献   

16.
Alveolar epithelial integrity in athletes with exercise-induced hypoxemia.   总被引:1,自引:0,他引:1  
The effect of incremental exercise to exhaustion on the change in pulmonary clearance rate (k) of aerosolized (99m)Tc-labeled diethylenetriaminepentaacetic acid ((99m)Tc-DTPA) and the relationship between k and arterial PO(2) (Pa(O(2))) during heavy work were investigated. Ten male cyclists (age = 25 +/- 2 yr, height = 180.9 +/- 4.0 cm, mass = 80.1 +/- 9.5 kg, maximal O(2) uptake = 5. 25 +/- 0.35 l/min, mean +/- SD) completed a pulmonary clearance test shortly (39 +/- 8 min) after a maximal O(2) uptake test. Resting pulmonary clearance was completed >/=24 h before or after the exercise test. Arterial blood was sampled at rest and at 1-min intervals during exercise. Minimum Pa(O(2)) values and maximum alveolar-arterial PO(2) difference ranged from 73 to 92 Torr and from 30 to 55 Torr, respectively. No significant difference between resting k and postexercise k for the total lung (0.55 +/- 0.20 vs. 0. 57 +/- 0.17 %/min, P > 0.05) was observed. Pearson product-moment correlation indicated no significant linear relationship between change in k for the total lung and minimum Pa(O(2)) (r = -0.26, P > 0.05). These results indicate that, averaged over subjects, pulmonary clearance of (99m)Tc-DTPA after incremental maximal exercise to exhaustion in highly trained male cyclists is unchanged, although the sampling time may have eliminated a transient effect. Lack of a linear relationship between k and minimum Pa(O(2)) during exercise suggests that exercise-induced hypoxemia occurs despite maintenance of alveolar epithelial integrity.  相似文献   

17.
MacDonald, Maureen, Preben K. Pedersen, and Richard L. Hughson. Acceleration ofO2 kinetics in heavysubmaximal exercise by hyperoxia and prior high-intensity exercise.J. Appl. Physiol. 83(4):1318-1325, 1997.We examined the hypothesis thatO2 uptake (O2) wouldchange more rapidly at the onset of step work rate transitions inexercise with hyperoxic gas breathing and after prior high-intensityexercise. The kinetics ofO2 were determined from themean response time (MRT; time to 63% of total change inO2) andcalculations of O2 deficit andslow component during normoxic and hyperoxic gas breathing in one groupof seven subjects during exercise below and above ventilatory threshold(VT) and in another group of seven subjects during exercise above VTwith and without prior high-intensity exercise. In exercise transitions below VT, hyperoxic gas breathing did not affect the kinetic response of O2 at theonset or end of exercise. At work rates above VT, hyperoxic gasbreathing accelerated both the on- and off-transient MRT, reduced theO2 deficit, and decreased theO2 slow component fromminute 3 to minute6 of exercise, compared with normoxia. Prior exerciseabove VT accelerated the on-transient MRT and reduced theO2 slow component fromminute 3 to minute6 of exercise in a second bout of exercise with bothnormoxic and hyperoxic gas breathing. However, the summatedO2 deficit in the second normoxicand hyperoxic steps was not different from that of the first steps inthe same gas condition. Faster on-transient responses in exerciseabove, but not below, VT with hyperoxia and, to a lesser degree, afterprior high-intensity exercise above VT support the theory of anO2 transport limitation at theonset of exercise for workloads >VT.

  相似文献   

18.
19.
We investigated the effect of exercise on iron metabolism in horses. Four horses were walked on a mechanical walker for 1 wk (pre-exercise). They then performed moderate exercise on a high-speed treadmill in the first week of the exercise and relative high in the second week and high in the third week. Serum iron was significantly lower in the third week of exercise than in the pre-exercise. Transferrin saturation (TS) was significantly lower in the first and third weeks of exercise than in the pre-exercise. Serum haptoglobin was significantly lower in the first week of exercise than in the pre-exercise and further significantly lower in the second and third weeks than in the first. The packed cell volume did not change during the experiment. The exercise significantly increased the apparent absorption of iron. Urinary iron excretion did not change throughout the experiment. Sweat iron loss did not change during the exercise. The exercise significantly increased iron balance. We considered that hemolysis is induced by moderate exercise and is further enhanced by heavy exercise, which decreases serum iron and TS. However, the increase in iron absorption compensates for the adverse effect of exercise on iron status. Therefore, exercise does not induce anemia in horses.  相似文献   

20.
We tested the hypothesis that maximal exercise performance in adults with cystic fibrosis is limited by arterial hypoxemia. In study 1, patients completed two maximal exercise tests, a control and a test with 400 ml of added dead space. Maximal O2 consumption was significantly lower in the added dead space study vs. control (1.04 +/- 0.15 vs. 1.20 +/- 0.11 l/min; P < 0.05), with no difference in peak ventilation. There was significant O2 desaturation during exercise that was equal in both control and added dead space studies. The decrease in maximal O2 consumption with added dead space suggests that maximal exercise in cystic fibrosis is limited by respiratory factors. We subsequently examined whether pulmonary mechanics or arterial hypoxemia limits maximal exercise performance. In study 2, patients completed two maximal exercise tests, a control and a test with 400 ml of added dead space while also breathing 38% O2. Added dead space was used to overcome the suppressive effects of hyperoxia on minute ventilation. Maximal O2 consumption was significantly higher with added dead space and 38% O2 vs. control (1.62 +/- 0.16 vs. 1.43 +/- 0.14 l/min; P < 0.05). Peak ventilation and O2 saturation were significantly greater in the added dead space and 38% O2 test vs. control. The increase in maximal O2 consumption and peak ventilation with added dead space and 38% O2 suggests that maximal exercise in cystic fibrosis is limited by arterial hypoxemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号