首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic control ofdifferential inspiratory timing(TI) at baseline has beenpreviously demonstrated among inbred mouse strains. The inheritancepattern for TI between C3H/HeJ(C3; 188 ± 3 ms) and C57BL/6J (B6; 111 ± 2 ms) progenitors wasconsistent with a two-gene model. By using the strain distributionpattern for recombinant inbred strains derived from C3 and B6progenitors, 100% concordance was established betweenTI phenotypes and DNA markers onmouse chromosome 3. This genotype-phenotype hypothesis was tested bytyping 52 B6C3F2(F2) progeny by using simplesequence repeat DNA markers (n = 21)polymorphic between C3 and B6 strains on mouse chromosome 3. Linkageanalysis compared marker genotypes to baseline ventilatory phenotypesby computing log-likelihood values. A putative quantitative trait locuslocated in proximity to D3Mit119 wassignificantly associated with baselineTI phenotypes. At the peak(log-likelihood = 3.3), the putative quantitative trait locusdetermined 25% of the phenotypic variance inTI among F2 progeny. In conclusion, thisgenetic model of ventilatory characteristics demonstrated an importantlinkage between differential baseline TI and a candidate genomicregion on mouse chromosome 3.

  相似文献   

2.
Genetic determinants of lung structure and function have been demonstrated by differential phenotypes among inbred mice strains. For example, previous studies have reported phenotypic variation in baseline ventilatory measurements of standard inbred murine strains as well as segregant and nonsegregant offspring of C3H/HeJ (C3) and C57BL/6J (B6) progenitors. One purpose of the present study is to test the hypothesis that a genetic basis for differential baseline breathing pattern is due to variation in lung mechanical properties. Quasi-static pressure-volume curves were performed on standard and recombinant inbred strains to explore the interactive role of lung mechanics in determination of functional baseline ventilatory outcomes. At airway pressures between 0 and 30 cmH2O, lung volumes are significantly (P < 0.01) greater in C3 mice relative to the B6 and A/J strains. In addition, the B6C3F1/J offspring demonstrate lung mechanical properties significantly (P < 0.01) different from the C3 progenitor but not distinguishable from the B6 progenitor. With the use of recombinant inbred strains derived from C3 and B6 progenitors, cosegregation analysis between inspiratory timing and measurements of lung volume and compliance indicate that strain differences in baseline breathing pattern and pressure-volume relationships are not genetically associated. Although strain differences in lung volume and compliance between C3 and B6 mice are inheritable, this study supports a dissociation between differential inspiratory time at baseline, a trait linked to a putative genomic region on mouse chromosome 3, and differential lung mechanics among C3 and B6 progenitors and their progeny.  相似文献   

3.
Fourteen recombinant inbred strains of mice have been produced by the inbreeding of the F2 generation of a cross between C57BL/6J and C3H/HeJ progenitor mice. The responses of these BXH strains to bacterial lipopolysaccharides (LPS) have been characterized. Four BXH strains are high LPS responders and nine strains are low LPS responders. One BXH strain shows intermediate responsiveness which may reflect residual heterozygosity. F1 hybrid mice from low x high responder strains were intermediate in their response to LPS suggesting additive genetic control. The LPS responses in backcross mice from the F1 x low LPS responders showed segregation consistent with LPS responsiveness being determined by a single gene. In 13/14 BXH strains, there was concordant inheritance of LPS responsiveness and the major urinary protein locus Mup-1b. The association of the expression of the Mup-1 alleles with LPS responsiveness in the BXH strains suggests that the defective LPS response gene in C3H/HeJ mice is located on chromosome 4.  相似文献   

4.
Recombinant inbred strains were used to demonstrate the existence of a major locus on chromosome 1, designated Sap, which controls the endogenous concentration of the mouse acute phase reactant, serum amyloid P-component (SAP). Levels of SAP were associated with alleles at the Ly-9 locus in two sets of RI strains: BXD (C57BL/6J × DBA/2) and BXH (C57BL/6J × C3H/HeJ). Low endogenous levels of SAP were present in the C57BL/6J progenitor strain and in most of the RI strains which inherited the Ly-9 ballele. High levels of SAP were present in the DBA/2J and C3H/HeJ progenitors and in most of the RI strains which inherited the Ly-9 aallele. In the BXD strains 91% of the genetic variation of SAP levels was accounted for by segregation at the Ly-9 locus while an additional 9% was attributed to genetic factors unlinked to Ly-9. In the BXH strains the percentage of genetic variation accounted for by Ly-9 segregation was reduced to 46%, while 54% was accounted for by other genetic factors. Because of background genetic variation it was not possible to detect any crossovers between Sap and Ly-9. However, in the BXD strains the linkage between Sap and Ly-9 appears to be quite close. The B6.C-H-25 ccongenic strain, which carries a segment of BALB/c chromosome 1 including the minor histocompatibility locus H-25 on a C57BL/6By background, had the same endogenous SAP level as the BALB/c donor strain.  相似文献   

5.
A common polygenic basis for quinine and PROP avoidance in mice   总被引:3,自引:2,他引:1  
Harder  DB; Whitney  G 《Chemical senses》1998,23(3):327-332
Inbred strains of mice (Mus musculus) differ greatly in ability to taste various bitter compounds. For some compounds, the differences result from allelic variation at a single locus. However, segregation patterns incompatible with monogenic inheritance have been found for quinine avoidance. The Soa bitter sensitivity locus exerts some influence on this phenotype, but an unknown number of other loci also contribute. Relative avoidance patterns for quinine sulfate in panels of naive inbred strains resembled avoidance patterns for 6-n-propyl-2- thiouracil (PROP), suggesting a common genetic basis. In particular, C57BL/6J mice strongly avoided both 0.1 mM quinine sulfate and 1 mM PROP in two-bottle preference tests, whereas C3H/HeJ mice were indifferent to both. Therefore, 12 BXH/Ty recombinant inbred strains, derived from these strains, were tested with both solutions to begin identification of the unknown bitter loci. Naive mice were tested for four consecutive days with each compound (order counterbalanced). Some BXH/Ty strain means resembled those of the parent strains, but others were intermediate. This indicated recombination among loci affecting avoidance, and therefore polygenic inheritance. The strain means were highly correlated across compounds (r = 0.98), suggesting that the same polygenes controlled both phenotypes. The BXH/Ty means for both compounds were then compared with the strain genotypes at 212 chromosome position markers distributed throughout the genome. Eight markers on five chromosomes (3, 6, 7, 8 and 9) yielded significant correlations. Six of the markers were correlated with both phenotypes, again suggesting common polygenic inheritance. The marker with the highest correlation was Prp, tightly linked to Soa on chromosome 6. The correlated marker regions likely contain quantitative trait loci affecting bitter avoidance. The phenotypic similarity of PROP to quinine, rather than to phenylthiourea, apparently stemming from a common polygenic basis, indicates a difference between mice and humans in gustatory organization related to bitters.   相似文献   

6.
The physical separation of Lps and Ifa loci in BXH recombinant inbred mice   总被引:2,自引:0,他引:2  
Several reports in the literature suggest that many of the phenotypic defects of LPS-hyporesponsive C3H/HeJ mice may be attributed to decreased IFN production by their macrophages. The physical proximity on chromosome 4 of the gene which encodes sensitivity to LPS (Lps) and the structural gene cluster which encodes IFN-alpha (Ifa), suggests the possibility that the Lps gene, whose product is unknown, may actually be a part of the Ifa gene cluster. The C57BL/6J and C3H/HeJ mouse strains carry distinct alleles at both the LPs and the Ifa loci. In this study, we have analyzed these parental strains, as well as 12 recombinant inbred strains derived from these parental strains (e.g., BXH strains), for inheritance of these distinct alleles. The results show the segregation of these two loci: in 5 of 12 BXH RI strains, the IFN-alpha restriction fragment length polymorphism characteristic of one parental strain was discordant with the predicted LPS response phenotype. Therefore, we conclude that the Lps and the Ifa genes are physically distinct despite the apparent cause and effect relationship which is observed phenotypically.  相似文献   

7.
Honda, Y., H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama. Effect of priorO2 breathing on ventilatoryresponse to sustained isocapnic hypoxia in adult humans.J. Appl. Physiol. 81(4):1627-1632, 1996.Sixteen healthy volunteers breathed 100%O2 or room air for 10 min in random order, then their ventilatory response to sustained normocapnic hypoxia (80% arterial O2saturation, as measured with a pulse oximeter) was studied for 20 min.In addition, to detect agents possibly responsible for the respiratorychanges, blood plasma of 10 of the 16 subjects was chemically analyzed.1) Preliminary O2 breathing uniformly andsubstantially augmented hypoxic ventilatory responses.2) However, the profile ofventilatory response in terms of relative magnitude, i.e., biphasichypoxic ventilatory depression, remained nearly unchanged.3) Augmented ventilatory incrementby prior O2 breathing wassignificantly correlated with increment in the plasma glutamine level.We conclude that preliminary O2administration enhances hypoxic ventilatory response without affectingthe biphasic response pattern and speculate that the excitatory aminoacid neurotransmitter glutamate, possibly derived from augmentedglutamine, may, at least in part, play a role in this ventilatoryenhancement.

  相似文献   

8.
Acutely lowering ambient O(2) tension increases ventilation in many mammalian species, including humans and mice. Inheritance patterns among kinships and between mouse strains suggest that a robust genetic influence determines individual hypoxic ventilatory responses (HVR). Here, we tested specific genetic hypotheses to describe the inheritance patterns of HVR phenotypes among two inbred mouse strains and their segregant and nonsegregant progeny. Using whole body plethysmography, we assessed the magnitude and pattern of ventilation in C3H/HeJ (C3) and C57BL/6J (B6) progenitor strains at baseline and during acute (3-5 min) hypoxic [mild hypercapnic hypoxia, inspired O(2) fraction (FI(O(2))) = 0.10] and normoxic (mild hypercapnic normoxia, FI(O(2)) = 0.21) inspirate challenges in mild hypercapnia (inspired CO(2) fraction = 0.03). First- and second-filial generations and two backcross progeny were also studied to assess response distributions of HVR phenotypes relative to the parental strains. Although the minute ventilation (VE) during hypoxia was comparable between the parental strains, breathing frequency (f) and tidal volume were significantly different; C3 mice demonstrated a slow, deep HVR relative to a rapid, shallow phenotype of B6 mice. The HVR profile in B6C3F(1)/J mice suggested that this offspring class represented a third phenotype, distinguishable from the parental strains. The distribution of HVR among backcross and intercross offspring suggested that the inheritance patterns for f and VE during mild hypercapnic hypoxia are consistent with models that incorporate two genetic determinants. These results further suggest that the quantitative genetic expression of alleles derived from C3 and B6 parental strains interact to significantly attenuate individual HVR in the first- and second-filial generations. In conclusion, the genetic control of HVR in this model was shown to exhibit a relatively simple genetic basis in terms of respiratory timing characteristics.  相似文献   

9.
The plasma profile of major lipoprotein classes and its subdivision into particular fractions plays a crucial role in the pathogenesis of atherosclerosis and is a major predictor of coronary artery disease. Our aim was to identify genomic determinants of triglyceride and cholesterol distribution into lipoprotein fractions and lipoprotein particle sizes in the recombinant inbred rat set PXO, in which alleles of two rat models of the metabolic syndrome (SHR and PD inbred strains) segregate together with those from Brown Norway rat strain. Adult male rats of 15 PXO strains (n = 8–13/strain) and two progenitor strains SHR-Lx (n = 13) and BXH2/Cub (n = 18) were subjected to one-week of high-sucrose diet feeding. We performed association analyses of triglyceride (TG) and cholesterol (C) concentrations in 20 lipoprotein fractions and the size of major classes of lipoprotein particles utilizing 704 polymorphic microsatellite markers, the genome-wide significance was validated by 2,000 permutations per trait. Subsequent in silico focusing of the identified quantitative trait loci was completed using a map of over 20,000 single nucleotide polymorphisms. In most of the phenotypes we identified substantial gradient among the strains (e.g. VLDL-TG from 5.6 to 66.7 mg/dl). We have identified 14 loci (encompassing 1 to 65 genes) on rat chromosomes 3, 4, 7, 8, 11 and 12 showing suggestive or significant association to one or more of the studied traits. PXO strains carrying the SHR allele displayed significantly higher values of the linked traits except for LDL-TG and adiposity index. Cholesterol concentrations in large, medium and very small LDL particles were significantly associated to a haplotype block spanning part of a single gene, low density lipoprotein receptor-related protein 1B (Lrp1b). Using genome-wide association we have identified new genetic determinants of triglyceride and cholesterol distribution into lipoprotein fractions in the recombinant inbred panel of rat model strains.  相似文献   

10.
The genetic basis for differences in the regulation of breathing is certainly multigenic. The present paper builds on a well-established genetic model of differences in breathing using inbred mouse strains. We tested the interactive effects of hypoxia and hypercapnia in two strains of mice known for variation in hypercapnic ventilatory sensitivity (HCVS); i.e., high gain in C57BL/6J (B6) and low gain in C3H/HeJ (C3) mice. Strain differences in the magnitude and pattern of breathing were measured during normoxia [inspired O(2) fraction (Fi(O(2))) = 0.21] and hypoxia (Fi(O(2)) = 0.10) with mild or severe hypercapnia (inspired CO(2) fraction = 0.03 or 0.08) using whole body plethysmography. At each level of Fi(O(2)), the change in minute ventilation (Ve) from 3 to 8% CO(2) was computed, and the strain differences between B6 and C3 mice in HCVS were maintained. Inheritance patterns showed potentiation effects of hypoxia on HCVS (i.e., CO(2) potentiation) unique to the B6C3F1/J offspring of B6 and C3 progenitors; i.e., the change in Ve from 3 to 8% CO(2) was significantly greater (P < 0.01) with hypoxia relative to normoxia in F1 mice. Linkage analysis using intercross progeny (F2; n = 52) of B6 and C3 progenitors revealed two significant quantitative trait loci associated with variable HCVS phenotypes. After normalization for body weight, variation in Ve responses during 8% CO(2) in hypoxia was linked to mouse chromosome 1 (logarithm of the odds ratio = 4.4) in an interval between 68 and 89 cM (i.e., between D1Mit14 and D1Mit291). The second quantitative trait loci linked differences in CO(2) potentiation to mouse chromosome 5 (logarithm of the odds ratio = 3.7) in a region between 7 and 29 cM (i.e., centered at D5Mit66). In conclusion, these results support the hypothesis that a minimum of two significant genes modulate the interactive effects of hypoxia and hypercapnia in this genetic model.  相似文献   

11.
C G Tankersley 《Journal of applied physiology》2001,90(4):1615-22; discussion 1606
Genetic determinants confer variation among inbred mouse strains with respect to the magnitude and pattern of breathing during acute hypoxic challenge. Specifically, inheritance patterns derived from C3H/HeJ (C3) and C57BL/6J (B6) parental strains suggest that differences in hypoxic ventilatory response (HVR) are controlled by as few as two genes. The present study demonstrates that at least one genetic determinant is located on mouse chromosome 9. This genotype-phenotype association was established by phenotyping 52 B6C3F2 (F2) offspring for HVR characteristics. A genome-wide screen was performed using microsatellite DNA markers (n = 176) polymorphic between C3 and B6 mice. By computing log-likelihood values (LOD scores), linkage analysis compared marker genotypes with minute ventilation (&Vdot;E), tidal volume (VT), and mean inspiratory flow (VT/TI, where TI is inspiratory time) during acute hypoxic challenge (inspired O2 fraction = 0.10, inspired CO2 fraction = 0.03 in N2). A putative quantitative trait locus (QTL) positioned in the vicinity of D9Mit207 was significantly associated with hypoxic VE (LOD = 4.5), VT (LOD = 4.0), and VT/TI (LOD = 5.1). For each of the three HVR characteristics, the putative QTL explained more than 30% of the phenotypic variation among F(2) offspring. In conclusion, this genetic model of differential HVR characteristics demonstrates that a locus approximately 33 centimorgans from the centromere on mouse chromosome 9 confers a substantial proportion of the variance in VE, VT, and VT/TI during acute hypoxic challenge.  相似文献   

12.
We identified mouse mammary tumor proviral loci in the AKR/J, C3H/HeJ, C57BL/6J, C57L/J, DBA/2J, and SWR/J inbred mouse strains and determined their segregation patterns in the AKXD, AKXL, BXD, BXH, and SWXL recombinant inbred strain sets. Two new Mtv loci, Mtv-29 and Mtv-30, were identified. Mtv-30 was genetically mapped to chromosome 12. Additionally, two previously identified Mtv loci, Mtv-14 and Mtv-23, were genetically mapped to chromosome 4 and chromosome 6, respectively.  相似文献   

13.
Genetic determinants confervariation among inbred mouse strains with respect to the magnitude andpattern of breathing during acute hypoxic challenge. Specifically,inheritance patterns derived from C3H/HeJ (C3) and C57BL/6J (B6)parental strains suggest that differences in hypoxic ventilatoryresponse (HVR) are controlled by as few as two genes. The present studydemonstrates that at least one genetic determinant is located on mousechromosome 9. This genotype-phenotype association was established byphenotyping 52 B6C3F2 (F2) offspring for HVRcharacteristics. A genome-wide screen was performed usingmicrosatellite DNA markers (n = 176) polymorphicbetween C3 and B6 mice. By computing log-likelihood values (LODscores), linkage analysis compared marker genotypes with minuteventilation (E), tidal volume (VT), andmean inspiratory flow (VT/TI, whereTI is inspiratory time) during acute hypoxic challenge(inspired O2 fraction = 0.10, inspired CO2fraction = 0.03 in N2). A putative quantitative traitlocus (QTL) positioned in the vicinity of D9Mit207 wassignificantly associated with hypoxic E (LOD = 4.5), VT (LOD = 4.0), andVT/TI (LOD = 5.1). For each of the threeHVR characteristics, the putative QTL explained more than 30% of thephenotypic variation among F2 offspring. In conclusion,this genetic model of differential HVR characteristics demonstratesthat a locus ~33 centimorgans from the centromere on mouse chromosome9 confers a substantial proportion of the variance inE, VT, and VT/TIduring acute hypoxic challenge.

  相似文献   

14.
Babb, T. G. Ventilatory response to exercise insubjects breathing CO2 orHeO2.J. Appl. Physiol. 82(3): 746-754, 1997.To investigate the effects of mechanical ventilatory limitationon the ventilatory response to exercise, eight older subjects with normal lung function were studied. Each subject performed graded cycleergometry to exhaustion once while breathing room air; once whilebreathing 3% CO2-21%O2-balanceN2; and once while breathing HeO2 (79% He and 21%O2). Minute ventilation(E) and respiratory mechanics weremeasured continuously during each 1-min increment in work rate (10 or20 W). Data were analyzed at rest, at ventilatory threshold (VTh),and at maximal exercise. When the subjects were breathing 3%CO2, there was an increase(P < 0.001) inE at rest and at VTh but not duringmaximal exercise. When the subjects were breathingHeO2,E was increased(P < 0.05) only during maximalexercise (24 ± 11%). The ventilatory response to exercise belowVTh was greater only when the subjects were breathing 3% CO2(P < 0.05). Above VTh, theventilatory response when the subjects were breathingHeO2 was greater than whenbreathing 3% CO2(P < 0.01). Flow limitation, aspercent of tidal volume, during maximal exercise was greater(P < 0.01) when the subjects werebreathing CO2 (22 ± 12%) thanwhen breathing room air (12 ± 9%) or when breathingHeO2 (10 ± 7%)(n = 7). End-expiratory lung volumeduring maximal exercise was lower when the subjects were breathingHeO2 than when breathing room airor when breathing CO2(P < 0.01). These data indicate thatolder subjects have little reserve for accommodating an increase inventilatory demand and suggest that mechanical ventilatory constraintsinfluence both the magnitude of Eduring maximal exercise and the regulation ofE and respiratory mechanics duringheavy-to-maximal exercise.

  相似文献   

15.
Genetic determinants confer variation between inbred mouse strains with respect to the magnitude and pattern of ventilation during hypercapnic challenge. Specifically, inheritance patterns derived from low-responsive C3H/HeJ (C3) and high-responsive C57BL/6J (B6) mouse strains suggest that differential hypercapnic ventilatory sensitivity (HCVS) is controlled by two independent genes. The present study also tests whether differential neuronal activity in respiratory control regions of the brain is positively associated with strain variation in HCVS. With the use of whole body plethysmography, ventilation was assessed in C3 and B6 strains at baseline and during 30 min of hypercapnia (inspired CO(2) fraction = 0.15, inspired O(2) fraction = 0.21 in N(2)). Subsequently, in situ hybridization histochemistry was performed to determine changes in c-fos gene expression in the commissural subnucleus of the nucleus tractus solitarius (NTS). During hypercapnia, breathing frequency and tidal volume were significantly (P < 0.01) different between strains: C3 mice showed a slow, deep-breathing pattern relative to a rapid, shallow phenotype of B6 mice. CO(2)-induced increase in c-fos gene expression was significantly (P < 0.01) greater in NTS regions of B6 compared with C3 mice. In this genetic model of differential HCVS, the results suggest that a genomic basis for varied hypercapnic chemoreception or transduction confers greater afferent neuronal activity in the caudal NTS for high-responsive B6 mice compared with low-responsive C3 mice.  相似文献   

16.
Effect of different levels of hyperoxia on breathing in healthy subjects   总被引:1,自引:0,他引:1  
Becker, Heinrich F., Olli Polo, Stephen G. McNamara, MichaelBerthon-Jones, and Colin E. Sullivan. Effect of different levelsof hyperoxia on breathing in healthy subjects. J. Appl. Physiol. 81(4): 1683-1690, 1996.Wehave recently shown that breathing 50%O2 markedly stimulates ventilationin healthy subjects if end-tidal PCO2(PETCO2) ismaintained. The aim of this study was to investigate apossible dose-dependent stimulation of ventilation byO2 and to examine possiblemechanisms of hyperoxic hyperventilation. In eight normalsubjects ventilation was measured while they were breathing 30 and 75%O2 for 30 min, withPETCO2 being held constant.Acute hypercapnic ventilatory responses were also tested in thesesubjects. The 75% O2 experimentwas repeated without controllingPETCO2 in 14 subjects, andin 6 subjects arterial blood gases were taken at baseline and at theend of the hyperoxia period. Minute ventilation(I) increased by 21 and 115% with 30 and 75% isocapnic hyperoxia, respectively. The 75%O2 without any control onPETCO2 led toa 16% increase inI, butPETCO2 decreased by3.6 Torr (9%). There was a linear correlation(r = 0.83) between the hypercapnic and the hyperoxic ventilatory response. In conclusion, isocapnic hyperoxia stimulates ventilation in a dose-dependent way, withI more than doubling after 30 min of75% O2. If isocapnia is notmaintained, hyperventilation is attenuated by a decrease in arterialPCO2. There is a correlation betweenhyperoxic and hypercapnic ventilatory responses. On the basis of datafrom the literature, we concluded that the Haldane effect seems to bethe major cause of hyperventilation duringboth isocapnic and poikilocapnichyperoxia.

  相似文献   

17.
We have constructed a genetic linkage map in the rat by analyzing the strain distribution patterns of 500 genetic markers in a large set of recombinant inbred strains derived from the spontaneously hypertensive rat and the Brown-Norway rat (HXB and BXH recombinant inbred strains). 454 of the markers could be assigned to specific chromosomes, and the amount of genome covered by the mapped markers was estimated to be 1151 centimorgans. By including a variety of morphologic, biochemical, immunogenetic, and molecular markers, the current map integrates and extends existing linkage data and should facilitate rat gene mapping and genetic studies of hypertension and other complex phenotypes of interest in the HXB and BXH recombinant inbred strains. Received: 21 June 1995 / Accepted: 11 September 1995  相似文献   

18.
Our purpose in this study was to identify different ventilatory phenotypes among four different strains of rats. We examined 114 rats from three in-house, inbred strains and one outbred strain: Brown Norway (BN; n = 26), Dahl salt-sensitive (n = 24), Fawn-hooded Hypertensive (FHH: n = 27), and outbred Sprague-Dawley rats (SD; n = 37). We measured eupneic (room air) breathing and the ventilatory responses to hypoxia (12% O(2)-88% N(2)), hypercapnia (7% CO(2)), and two levels of submaximal exercise. Primary strain differences were between BN and the other strains. BN rats had a relatively attenuated ventilatory response to CO(2) (P < 0.001), an accentuated ventilatory response to exercise (P < 0.05), and an accentuated ventilatory roll-off during hypoxia (P < 0.05). Ventilation during hypoxia was lower than other strains, but hyperventilation during hypoxia was equal to the other strains (P > 0.05), indicating that the metabolic rate during hypoxia decreased more in BN rats than in other strains. Another strain difference was in the frequency and timing components of augmented breaths, where FHH rats frequently differed from the other strains, and the BN rats had the longest expiratory time of the augmented breaths (probably secondary to the blunted CO(2) sensitivity). These strain differences not only provide insight into physiological mechanisms but also indicate traits (such as CO(2) sensitivity) that are genetically regulated. Finally, the data establish a foundation for physiological genomic studies aimed at elucidating the genetics of these ventilatory control mechanisms.  相似文献   

19.
The production of granulocytes and macrophages from progenitor cells in the bone marrow is controlled, in part, by a family of humoral regulators, termed colony stimulating factors (CSF). We have examined genetic factors controlling this process using in vitro cloning techniques. The inbred mouse strain LP/J showed elevated colony formation (CFU-C) in response to one subtype of CSF (G,M-CSF) compared to other strains of mice examined including the strain C57BL/6J. This variation resulted in a shift to the left of the CFU-C dose-response curve for LP/J. No difference between LP/J and C57BL/6J was seen with another subtype of CSF (CSF-1). Maximal CFU-C response was similar in the two mouse strains with both types of CSF, and mixing experiments with both types of CSF gave the same maximal level of colony formation as the individual CSF. (C57BL/6J X LP/J)F1 progeny exhibited a CFU-C dose-response curve to CSF-2 that was intermediate between the parental types, indicating additive inheritance. Genetic analysis of backcross progeny suggested that the variation in CFU-C response is probably determined by a single primary gene, although the variability of the colony formation assay has complicated interpretation of genetic studies. These results suggest that CSF-1 and G,M-CSF act independently on a single bone marrow progenitor cell population. The properties of the genetic variation for G,M-CSF response are consistent with an alteration in cellular receptors for G,M-CSF.  相似文献   

20.
The aromatic hydrocarbon responsiveness (Ah) locus has been correlated with genetic differences in the risk of drug toxicity, teratogenesis, chemical carcinogenesis, and mutagenesis. Hepatic cytosolic Ah receptor levels, 2-amino-5-chlorobenzoxazole (zoxazolamine) paralysis time following beta-naphthoflavone treatment and aryl hydrocarbon hydroxylase (AHH3, acetanilide 4-hydroxylase (Ac4H), and NAD(P)H:menadione oxidoreductase (NMOR)4, induction by 3-methylcholanthrene were studied in (a) the progenitors C57BL/6J (Ahb/Ahb) and DBA/2J (Ahd/Ahd) and 25 BXD recombinant inbred lines, (b) the progenitors C57BL/6N and C3H/HeN and 14 B6NXC3N recombinant inbred lines, and (c) the progenitors C57BL/6J and C3H/HeJ and 12 BXH recombinant inbred lines. The Ahb phenotype exhibits greater than 5 femtomole receptor/mg of cytosolic protein, less than or equal to 15 minutes zoxazolamine paralysis time, and twofold to 15-fold induction of these three hepatic enzyme activities; the Ahd phenotype exhibits less than or equal to 2 fmol receptor/mg protein, greater than 15 minutes zoxazolamine paralysis time, and less than 30% induction of these three activities. Among the BXD lines but especially among the B6NXC3N and BXH lines, high frequencies of recombination were found; the phenotype of each of the five parameters did not segregate with the phenotype of each of the other parameters in four or more recombinant lines. This report shows for the first time that AHH induction by 3-methylcholanthrene can occur in the Ahd phenotype mouse. These data underline the complexity of this genetic system when genes from C57BL/6 and DBA/2 are combined and particularly when genes from C57BL/6 and C3H/He inbred mouse strains are combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号