首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.  相似文献   

2.
Theoretical investigation has been made on obliquely propagating dust-acoustic (DA) solitary waves (SWs) in a magnetized dusty plasma which consists of non-inertial adiabatic electron and ion fluids, and inertial negatively as well as positively charged adiabatic dust fluids. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits a solitary wave solution for small but finite amplitude limit. It has been shown that the basic features (speed, height, thickness, etc.) of such DA solitary structures are significantly modified by adiabaticity of plasma fluids, opposite polarity dust components, and the obliqueness of external magnetic field. The SWs have been changed from compressive to rarefactive depending on the value of μ (a parameter determining the number of positive dust present in this plasma model). The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.).  相似文献   

3.
The effect is considered of the amplification of an external resonant error field near the stability boundary of the so-called resistive wall modes observed in the DIII-D tokamak. The analysis is performed in a standard cylindrical approximation. The model is based on Maxwell’s equations and Ohm’s law; therefore, the results of the analysis are valid for any large-scale modes interacting with a conducting wall. In contrast to earlier approaches, the model considers the resonant field amplification as a dynamic effect. It is shown that, when the effect is the strongest, the stationary solutions proposed earlier are inapplicable. The problem of plasma response to a probing pulse of the resonant field of a given amplitude and duration is analyzed. The relationships obtained explain the basic features of the observed phenomena in the DIII-D tokamak and allow direct experimental verification.  相似文献   

4.
The influence of resonant charge exchange for ion-atom interaction on the viscosity of partially ionized plasma embedded in the magnetic field is investigated. The general system of equations used to derive the viscosity coefficients for an arbitrary plasma component in the 21-moment approximation of Grad’s method is presented. The expressions for the coefficients of total and partial viscosities of a multicomponent partially ionized plasma in the magnetic field are obtained. As an example, the coefficients of the parallel and transverse viscosities for the ionic and neutral components of the partially ionized hydrogen plasma are calculated. It is shown that the account for resonant charge exchange can lead to a substantial change of the parallel and transverse viscosity of the plasma components in the region of low degrees of ionization on the order of 0.1.  相似文献   

5.
The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.  相似文献   

6.
Recent multispacecraft observations in the Earth’s magnetosphere have revealed an abundance of magnetic holes—localized magnetic field depressions. These magnetic holes are characterized by the plasma pressure enhancement and strongly localized currents flowing around the hole boundaries. There are several numerical and analytical models describing 2D configurations of magnetic holes, but the 3D distribution of magnetic fields and electric currents is studied poorly. Such a 3D magnetic field configuration is important for accurate investigation of charged particle dynamics within magnetic holes. Moreover, the 3D distribution of currents can be used for distant probing of magnetic holes in the magnetosphere. In this study, a 3D magnetic hole model using the single-fluid approximation and a spatial scale hierarchy with the distinct separation of gradients is developed. It is shown that such 3D holes can be obtained as a generalization of 1D models with the plasma pressure distribution adopted from the kinetic approach. The proposed model contains two magnetic field components and field-aligned currents. The magnetic field line configuration resembles the magnetic trap where hot charged particles bounce between mirror points. However, the approximation of isotropic pressure results in a constant plasma pressure along magnetic field lines, and the proposed magnetic hole model does not confine plasma along the field direction.  相似文献   

7.
A new technique for localization of the light in subwavelength scale is proposed by using two adjacent metallic wedges, which are made by different metals, i.e., Al and Ag. Green’s function surface integral equation method is exploited to numerically calculate magnetic field at different points. The results illustrate that by controlling the phase difference between two surface plasmon polariton waves propagating on the sides of the first wedge and the distance between two wedges the amplitude and the phase of SPP waves generated on the sides of the second wedge can be adjusted.  相似文献   

8.
The propagation of large-amplitude solitary ion-acoustic waves in magnetized plasma is analyzed. The problem is solved without assuming plasma quasineutrality within the pulse, and the wave potential is described by Poisson’s equation. Solutions in the form of supersonic and near-sonic solitary waves propagating obliquely to the magnetic field are found. The pulses have several peaks and exist for a discrete set of the wave parameters. The amplitude and oscillation frequency of a solitary wave are determined as functions of the Mach number and the propagation angle with respect to the magnetic field.  相似文献   

9.
The effect of long-wavelength magnetic field disturbances typical of the Earth’s auroral region on the generation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron flow propagates against the background of cold low-density plasma is analyzed. The dynamics of the propagation and amplification of fluctuation waves with initial group velocities directed toward the higher magnetic field is considered in the geometrical optics approximation. Analysis of wave trajectories shows that the wave amplification coefficients depend on the magnetic field gradient in the reflection region. If the wave reflection point lies in the region where the gradient of the disturbed magnetic field is less than that of the undisturbed dipole field, then the wave amplification coefficients exceed those of waves propagating in the undisturbed field, and vice versa. Thus, the shape of the spectrum of generated waves changes in the presence of long-wavelength disturbances of the dipole magnetic field in such a way that segments with different curvatures can form in the spectrum.  相似文献   

10.
The excitation of quasistatic magnetic fields by a circularly polarized laser pulse in a plasma channel is considered. It is shown that, to second order in the amplitude of the electric field of the laser pulse, circular rotation of the plane of polarization of the laser radiation in a radially nonuniform plasma gives rise to a nonlinear azimuthal current and leads to the excitation of the radial and axial components of the magnetic field. The dependence of the magnetic field distribution over the plasma channel on the spatial dimensions of the pulse and on the channel width is investigated for a moderate-power laser pulse. The structure of the magnetic fields excited by a relativistic laser pulse in a wide plasma channel is analyzed.  相似文献   

11.
Effects of a homogeneous static magnetic field on erythrocyte sedimentation rate (ESR) have been assessed by using the standard Westergren method. A magnetic field of 6.3 T in the vertical direction only slightly enhanced ESR in saline solution, which was consistent with an effect on cell orientation. On the other hand, the magnetic field greatly enhanced ESR in plasma. It took a long time (about 20 min) for an ESR change to occur in plasma in response to the magnetic field. The effects in plasma were too large to originate only from cell orientation and were clearly distinct from a magnetic field-induced Boycott effect under an inhomogeneous magnetic field. A morphological examination and the nonlinear time course of the sedimentation in plasma indicated that the magnetic field increased cell aggregation and thereby enhanced ESR in plasma. Bioelectromagnetics 18:215–222, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Influence of the magnetic fields on frog sciatic nerve   总被引:1,自引:0,他引:1  
The constant magnetic field (1000–7120 gauss) was applied to previously stimulated frog sciatic nerve. The following was observed : a) There is no instantaneous effect of either parallel or perpendicular magnetic field on compound action potential amplitude. b) Parallel magnetic field of 1000–7120 gauss does not change the amplitude of compound action potential significantly with time. c) When perpendicular magnetic field was applied to the nerve, an increase in the amplitude of compound action potential was observed, which can mean that the nerve exhibits some sort of magnetic anisotropy.  相似文献   

13.
Stochastic heating of plasma electrons by a large-amplitude electromagnetic wave propagating across a strong external magnetic field is studied theoretically and numerically. An analytic estimate of the threshold wave amplitude at which heating begins is obtained. The dependence of the average electron energy on the magnetic field and plasma density is investigated using particle-in-cell simulations.  相似文献   

14.

An exact solution is derived to the equations of vortex electron anisotropic hydrodynamics for a plasma that is unstable against the Weibel instability driven by the electron temperature anisotropy. This solution describes saturation of the Weibel instability in the single-mode regime with an arbitrary wavelength and corresponds to a standing helical wave of magnetic perturbations in which the amplitude of the generated magnetic field varies periodically over time. The longitudinal and transverse (with respect to the rotating anisotropy axis) plasma temperatures are subject to the same periodic variations. In this case, the maximum magnetic field energy can be on the order of the plasma thermal energy.

  相似文献   

15.
A technique for calculating a plasma opening switch in an external magnetic field and its matching to a load the impedance of which increases with time was verified experimentally. The experiments were performed in the RS-20 facility both in the absence of a load and with various inductive loads. The amplitude of the voltage pulse at the input of the plasma opening switch was 0.36–0.84 MV, the current amplitude was 280–320 kA, and the pulse duration was ~2 μs, whereas the corresponding parameters of the output pulse were 0.8–3.2 MV, 0–240 kA, and ~100 ns.  相似文献   

16.
Results are presented from numerical simulations of axisymmetric plasma flows that occur in a coaxial accelerator with a longitudinal magnetic field. The simulations were carried out based on a two-dimensional MHD plasma dynamic model for the general case of a three-component magnetic field. The steady plasma flows are calculated in solving the time-dependent MHD problem by the relaxation method. The results of simulations of steady transonic flows are compared with the solutions that were obtained in the smooth accelerator channel approximation. The main regular features of plasmodynamic processes are revealed. It is found that current sheets arise in the plasma flow in a comparatively strong longitudinal magnetic field.  相似文献   

17.
It was shown that the stimulating effect of weak combined magnetic fields (constant component 42 microT, frequency of the variable component 3.7 Hz) on the division of planarians depends on the amplitude of the variable component of the field. The effect is particularly pronounced at 40 (the main maximum), 120, 160, and 640 nT. Narrow ranges of effective amplitudes alternate in some cases with equally narrow ranges in which the system does not respond to he treatment. In the range of super weak amplitudes of the variable field (0.1 and 1 nT), the stimulating effect is poorly pronounced. The data obtained indicate the presence of narrow amplitude windows in the response of the biological systems to weak and super weak magnetic fields. In a special series of experiments, it was shown that the effect of fields on planarians is partially mediated via aqueous medium preliminarily treated with weak magnetic fields. It is noteworthy that in experiments with water treated with weak magnetic fields, there were no pronounced maxima and minima in the magnitude of the effect in the range of amplitude of the variable magnetic field from 40 to 320 nT.  相似文献   

18.
An active particle diagnostic method based on the secondary charge exchange of hydrogen atoms of a probing (diagnostic) beam is proposed for local measurements of the magnetic field direction in the plasma of a thermonuclear fusion reactor. Experiments with new-generation large devices require searching for novel methods for measuring the direction of the total magnetic field in a plasma at different points along the radius of the plasma column. The main idea of the method proposed, which holds great promise for large devices, is outlined. The possibility of using the method on ITER—a large fusion reactor that is now at the design stage—is illustrated by carrying out relevant numerical simulations. The results obtained for one of the main discharge scenarios, with the injection geometry and probing beam energy (100 eV) that are now adopted for the ITER design, show that the method can provide local measurements of the magnetic field direction (the magnetic pitch angle) and of the spatial variations of the field vector. Further analysis has revealed, however, that, from the standpoint of signal intensity and signal-to-noise ratio, it is expedient to increase the energy of the beam atoms to 200–250 keV. With such probing beams, the method ensures a spatial (radial) resolution of about 10 cm in the plasma core during a signal acquisition time of 10 ms. The magnetic pitch angle can be measured with an accuracy of 5 × 10?3 rad. An important advantage of the method proposed is its ability to directly measure the pitch angle of the magnetic field lines.  相似文献   

19.
Based on the magnetohydrodynamic (MHD) equations for an incompressible conductive viscous fluid, the possible mechanism of the formation of giant MHD vortices recently discovered in the solar atmosphere (chromosphere) is analyzed. It is assumed that these vortices arise in the regions of the solar surface (photosphere) with ascending flows of hot plasma that arrives from the inner regions of the Sun as a result of thermal convection and is accelerated upward under the action of the chromospheric plasma pressure gradient. It is shown that, under the assumption of plasma incompressibility and flow continuity, the ascending plasma flows induce converging radial plasma flows, which create the convective and Coriolis nonlinear hydrodynamic forces due to the nonzero initial vorticity of the chromospheric plasma caused by Sun’s rotation. The combined action of these two forces leads to the exponential acceleration of the solid-body rotation of plasma inside the ascending flow, thereby creating a vortex that generates an axial magnetic field, in agreement with astrophysical observations.  相似文献   

20.
The interaction of an expanding laser plasma with a uniform external magnetic field is studied over a wide range of experimental parameters (for a plasma energy of up to 300 J and a magnetic induction of up to 8 kG). By analyzing the data from these and other experiments, as well as the results of simulations with the use of a two-fluid Hall plasma model, it was found for the first time that the flute instability of the plasma boundary plays a decisive role in the process of the plasma cloud expansion. It is shown that, when the ion Larmor radius is sufficiently large, this instability can significantly affect the maximum radius of the diamagnetic cavity of the plasma cloud and the deceleration of its front by the magnetic field. A physical model based on the Hall effect is proposed to explain such influence. The model adequately describes data from one-dimensional simulations, as well as from experiments with quasi-spherical laser plasma clouds. The results obtained can be helpful in interpreting the data from active magnetospheric experiments with barium plasma clouds (such as AMPTE) and analyzing the plasma dynamics in future ICF reactors and propulsion systems with a magnetic field for direct conversion of fusion energy into electric energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号