首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Biodegradation of two polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by a white rot fungus, Ganoderma lucidum, in broth cultures was investigated. It was found that the biomass of the organism decreased with the increase of PAH concentration in the cultures. In the cultures with 2 to 50 mg l−1 PAHs, the degradation rate constants (k1) increased with the PAH concentration, whereas, at the level of 100 mg l−1, the degradation rate constants decreased. In the presence of 20 mg l−1 PAHs, the highest degradation rates of both PAHs occurred in cultures with an initial pH of 4.0 at 30 °C. The addition of CuSO4, citric acid, gallic acid, tartaric acid, veratryl alcohol, guaiacol, 2,2′-azino-bis-(3- ethylbenzothazoline-6-sulfonate) (ABTS) enhanced the degradation of both PAHs and laccase activities; whereas the supplement of oxalate, di-n-butyl phthalate (DBP), and nonylphenol (NP) decreased the degradation of both PAHs and inhibited laccase production. In conclusion, G. lucidum is a promising white rot fungus to degrade PAHs such as phenanthrene and pyrene in the environment.  相似文献   

2.
A soil sample collected underneath a sewage pipe of the west side of Yangpu refining factory in Haikou city, Hainan Province, China was inoculated in minimum medium supplemented with fluoranthene. After 8 enrichment cycles, a bacterial consortium (Y12) was obtained through water-silicone oil dual system in the laboratory. The consortium Y12 could degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, anthracene, fluoranthene, pyrene and benzo[a]pyrene. The consortium Y12 was repeatedly cultured for more than 40 circles, from which a bacterial strain FB3 was isolated. This strain was identified as a Sphingobium sp. through the 16S rDNA sequence alignment. Strain FB3 could degrade 99 ± 0.4%, 67 ± 2%, 97 ± 3%, 72 ± 8%, and 6 ± 2% (uncorrected degradation percentages) of phenanthrene, anthracene, fluoranthene and pyrene each at level of 100 mg L−1 and benzo[a]pyrene at 10 mg L−1, respectively, in 10 days, which the five PAHs were the sole carbon source as a mixture in minimum medium. The degradation percentages of phenanthrene, anthracene, fluoranthene, pyrene (each at level of 100 mg L−1) and benzo[a]pyrene (10 mg L−1) by consortium Y12 were 99 ± 0.1%, 65 ± 3%, 99 ± 0.3%, 79 ± 1% and 7 ± 6%, respectively, in 10 days. Strain FB3 could degrade those PAHs under a range of pH 5–9, being optimum at pH 7.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds generated mainly by anthropogenic sources. They are considered toxic to mammals, since they have carcinogenic, mutagenic and genotoxic properties, among others. Although mycoremediation is an efficient, economical and eco-friendly technique for degrading PAHs, the fungal degradation potential of the phylum Ascomycota has not been widely studied. In this work, we evaluated different fungal strains from the polluted soil of ‘La Escondida’ lagoon in Reynosa, Mexico to know their potential to degrade phenanthrene (PHE). Forty-three soil isolates with the capacity to grow in the presence of PHE (0·1% w/v) were obtained. The fungi Aspergillus oryzae MF13 and Aspergillus flavipes QCS12 had the best potential to degrade PHE. Both fungi germinated and grew at PHE concentrations of up to 5000 mg l−1 and degraded 235 mg l−1 of PHE in 28 days, with and without an additional carbon source. These characteristics indicate that A. oryzae MF13 and A. flavipes QCS12 could be promising organisms for the remediation of sites contaminated with PAHs and detoxification of recalcitrant xenobiotics.  相似文献   

4.
A yeast strain AEH was isolated from oil contaminated soil and identified by analysis of 18S and 26S ribosomal DNA sequences asPichia anomala. Strain AEH was capable of degrading naphthalene, phenanthrene and chrysene, singly, and benzo(a)pyrene in combination. The yeast degraded 5.36 mg naphthalene l?1 within 2 days, and 5.04 mg phenanthrene l?1 and 1.54 mg chrysene 1?1 within 10 days. When a mixture of the four polycyclic aromatic hydrocarbons (PAHs) was treated at a concentration between 2.98 mg l?1 and 6.89 mg l?1, degradation rates were delayed for naphthalene and phenanthrene (3.79 mg l?1 and, 4.20 mg l?1 within 10 days, respectively), but enhanced for chrysene and benzo(a)pyrene (3.37 mg l?1 and, 1.91 mg l?1 within 10 days, respectively). In a binary system, all of the other 3 PAHs could be utilized as the carbon source for the cometabolic degradation of benzo(a)pyrene with naphthale ne as the best one.  相似文献   

5.
Low aqueous phase solubility is the major limiting factor in successful biodegradation of pyrene and other polycyclic aromatic hydrocarbons (PAH), which can, however, be overcome by using a suitable surfactant. Biodegradation of pyrene by immobilized cells of Mycobacterium frederiksbergense in presence of non-ionic surfactant Tween 80 was evaluated. For cell immobilization, beads were prepared using calcium alginate as the immobilizing material based on immobilized cell viability and mechanical stability of the beads. Complete degradation of pyrene was achieved employing the immobilized cells in batch shake flask experiments for all four different initial concentrations of the PAH at 100 mg l−1, 200 mg l−1, 400 mg l−1 and 1000 mg l−1. The experimental results of biodegradation of pyrene at very high initial concentration of 1000 mg l−1 using the cell immobilized beads was further investigated in a 3 l fermentor operated at controlled conditions of 150 rpm, 28 °C, pH 7 and 1.5 l min−1 aeration. The results confirmed complete degradation of the PAH with a very higher degradation rate of 250 mg l−1 d−1, which is so far the highest value reported for pyrene biodegradation.  相似文献   

6.
Pyrene and fluoranthene, when supplied as the sole carbon source, were not degraded by Burkholderia sp. VUN10013. However, when added in a mixture with phenanthrene, both pyrene and fluoranthene were degraded in liquid broth and soil. The amounts of pyrene and fluoranthene in liquid media (initial concentrations of 50 mg l−1 each) decreased to 42.1% and 41.1%, respectively, after 21 days. The amounts of pyrene and fluoranthene in soil (initial concentrations of 75 mg kg−1 dry soil each) decreased to 25.8% and 12.1%, respectively, after 60 days. None of the high molecular weight (HMW) polycylic aromatic hydrocarbons (PAHs) tested adversely affected phenanthrene degradation by this bacterial strain and the amount of phenanthrene decreased rapidly within 3 and 15 days of incubation in liquid broth and soil, respectively. Anthracene also stimulated the degradation of pyrene or fluoranthene by Burkholderia sp. VUN10013, but to a lesser extent than phenanthrene. The extent of anthracene degradation decreased in the presence of these HMW PAHs.  相似文献   

7.
Removal of polycyclic aromatic hydrocarbons (PAHs), a group of widespread toxic compounds, has been one of the environmental issues in wastewater treatment systems for many years. In this study, biodegradation of phenanthrene (PHE), as a model contaminant, by a microbial consortium entrapped in polyvinyl alcohol (PVA) cryogel prepared by freeze-thaw method was investigated. The effect of inoculum size (300–900 mg of cell dry weight per liter) and initial PHE concentration (100–2000 ppm) as well as bead cell density (5 and 10 mg ml−1) on PHE biodegradation by freely suspended cell (FC) and immobilized cell (IC) systems in aqueous phase was examined. Results showed that although both IC and FC systems were capable of complete removal of 100 and 250 ppm of initial PHE (as sole carbon and energy sources), incomplete PHE removals were observed at higher initial PHE concentrations up to 2000 ppm after 7 days. IC system resulted in the maximum PHE removal of 400 ppm at initial PHE concentration of 750 ppm and inoculum size of 600 mg l−1, while under these conditions FC system removed 310 ppm of PHE. Moreover, bead cell density was shown to affect the performance of IC system, with the lower density of 5 mg ml−1 leading to a higher PHE removal due to the enhanced transport phenomena in the culture. Additionally, a correlation was proposed to predict PHE biodegradation at a range of initial PHE concentrations.  相似文献   

8.
A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg·L−1) in a minimal salts medium (MSM) within 48 hours at an initial pH of 7.0 and a temperature of 30°C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam), invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg·L−1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.  相似文献   

9.
We investigated the PCB-degrading abilities of four bacterial strains isolated from long-term PCB-contaminated soil (Alcaligenes xylosoxidans and Pseudomonas stutzeri) and sediments (Ochrobactrum anthropi and Pseudomonas veronii) that were co-metabolically grown on glucose plus biphenyl which is an inducer of the PCB catabolic pathway. The aim of study was to determine the respective contribution of biomass increase and expression of degrading enzymes on the PCB degrading abilities of each isolate. Growth on 5 g l−1 glucose alone resulted in the highest stimulation of the growth of bacterial strains, whereas grown on 10 mg l−1, 100 mg l−1, 1 g l−1, or 5 g l−1 biphenyl did not effected the bacterial growth. None of the strains used in this study was able to grow on PCBs as the sole carbon source. Cells grown on glucose exhibited enhanced degradation ability due to an increased biomass. Addition of biphenyl at concentrations of 1 or 5 g l−1 did not increase total PCB degradation, but stimulated the degradation of highly chlorinated congeners for some of the strains. The degradation of di- and tri-chlorobiphenyls was significantly lower for cells grown on 5 g l−1 biphenyl independently on glucose addition. The highest degradation of the PCBs was obtained for A. xylosoxidans grown in the presence of glucose. Thus A. xylosoxidans appears to be the most promising among the four bacterial isolates for the purpose of bioremediation.  相似文献   

10.
Samborombón Bay, Argentina, is a highly productive area exposed to chronic contamination, including polycyclic aromatic hydrocarbons. Four phenanthrene-degrading strains were isolated from sediments collected in this area. Analysis of partial 16S rRNA sequencing and a BLAST search indicated that three of the strains belong to genus Pseudomonas and one to Sphingomonas. All the strains were able to grow in 150 mg l−1 phenanthrene as the sole carbon and energy source, with high degradation efficiency (75–100% in 72–168 h). Growth in sodium salicylate indicated that the Pseudomonas strains used this pathway to degrade phenanthrene.Strategies that may enhance substrate bioavailability, such as surfactant production and chemotactic responses, were tested. Two Pseudomonas strains showed significant production of surface-active compounds, and a strong chemotactic response toward phenanthrene. Together with the ability to consume the supplied phenanthrene to completion, these characteristics make the mentioned strains good candidates for bioremediation strategies intended to clean up polluted areas.  相似文献   

11.
One pyrene-degrading endophytic bacterium was isolated from plants grown in polycyclic aromatic hydrocarbon-contaminated soils and identified as Enterobacter sp. 12J1 based on the 16S rDNA gene sequence analysis. Heavy metal and antibiotic resistance, degradation of pyrene, solubilization of inorganic phosphate and cell surface hydrophobicity characteristics of the isolate were further characterized. The isolate was also evaluated for promoting plant growth of wheat and maize and pyrene removal from pyrene-amended soil in pot experiments. High-performance liquid chromatograph (HPLC) analysis showed that the degradation rate of pyrene (5 mg l−1) by the endophytic bacterial strain 12J1 was 83.8% under 28 °C for 7 days. The Enterobacter sp. 12J1 could produce indole acetic acid (IAA), siderophore and solubilize inorganic phosphate. The Enterobacter sp. 12J1 also has a cell surface hydrophobicity. In the live bacterial inoculation experiment, an increase in pyrene removal varying from 60% to 107% was observed in the planted soils treated with 100 mg kg−1 of pyrene compared with the unplanted soils. The rate of pyrene removal increased by 43–65% in the live bacterium-inoculated planted soils compared with the dead bacterium-inoculated planted soils. Although there were no significant differences in the total culturable bacterial numbers between live and dead bacterial inoculation, the numbers of pyrene-degrading bacteria were significantly greater in the live bacterium-inoculated planted or unplanted soils. The isolate could colonize the tissue (root and stem) interiors and rhizosphere soils of wheat and maize after root inoculation.  相似文献   

12.
In this environmental-sample based study, rapid microbial-mediated degradation of 2,4,6-trinitrotoluene (TNT) contaminated soils is demonstrated by a novel strain, Achromobacter spanius STE 11. Complete removal of 100 mg L−1 TNT is achieved within only 20 h under aerobic conditions by the isolate. In this bio-conversion process, TNT is transformed to 2,4-dinitrotoluene (7 mg L−1), 2,6-dinitrotoluene (3 mg L−1), 4-aminodinitrotoluene (49 mg L−1) and 2-aminodinitrotoluene (16 mg L−1) as the key metabolites. A. spanius STE 11 has the ability to denitrate TNT in aerobic conditions as suggested by the dinitrotoluene and NO3 productions during the growth period. Elemental analysis results indicate that 24.77 mg L−1 nitrogen from TNT was accumulated in the cell biomass, showing that STE 11 can use TNT as its sole nitrogen source. TNT degradation was observed between pH 4.0–8.0 and 4–43 °C; however, the most efficient degradation was at pH 6.0–7.0 and 30 °C.  相似文献   

13.
《Process Biochemistry》2007,42(3):401-408
This study systematically characterized an aerobic bacterial strain Sphingomonas sp. GY2B for biotransformation of phenanthrene. The strain was isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and was shown to efficiently use phenanthrene as the sole carbon and energy source. The antibiotics discs susceptibility test revealed that the bacterium was susceptible to some commonly used antibiotics, such as cefuroxime, chloramphenicol, erythromycin and tetracycline. It showed better growth at pH 7.4 and 30 °C and in a mineral salts medium (MSM) with phenanthrene at 100 mg L−1 as the substrate. The results indicated that 99.8% of the substrate had been degraded and that salicylate route was likely the metabolic pathway. When added as the second organic chemical, glucose could enhance the bacterial growth at low concentration (10–200 mg L−1), but could inhibit cell growth at high concentration (>500 mg L−1). Further study showed that strain GY2B could also use naphthalene, phenol, 1-hydroxy-2-naphthoic acid, 2-naphthol, salicylic acid and catechol as the sole carbon and energy source, but did not grow on 1-naphthol which could be co-metabolized in the present of phenanthrene or 1-hydroxy-2-naphthoic acid.  相似文献   

14.
A sediment sample from Venice Lagoon was found to be contaminated with 475 mg Kg−1 polycyclic aromatic hydrocarbons (PAHs). Naphthalene was the principal pollutant at 26% of total PAHs. Two strains of Pseudomonas SN1 and SB1 were isolated from sediment amended with 2% naphthalene. 16S rRNA gene sequence analysis indicated that the two strains have about 99% nucleotide identity with strains of the genus Pseudomonas, and are very close to Pseudomonas stutzeri. Their metabolic profiles showed significant nutritional differences, the most significant of which was that SN1 grows in marine mineral medium spiked with naphthalene and SB1 grows with biphenyl as sole carbon and energy sources. Pseudomonas sp. SN1 had a doubling time of 3.1 h with 2% naphthalene and SB1 had a doubling time of 19.5 h with 2% biphenyl. Strain SN1 oxidised naphthalene at 564±32 mg O2 l−1 d−1 and SB1 oxidised biphenyl at 426±25 mg O2 l−1 d−1 in respirometry reaction vessels under controlled conditions. Screening of the two strains for dioxygenase genes involved in the first step of the two hydrocarbon degradation pathways, by polymerase chain reaction, showed naphthalene dioxygenase in SN1 and biphenyl dioxygenase in SB1. The strains each have a different catechol 2,3-dioxygenase responsible for cleavage of the aromatic ring.  相似文献   

15.
16.
This study investigated the potential of the Fe(II)-oxidizing bacteria in removing arsenic in aqueous environment. The bacteria were isolated from the batch of tap water and rusty iron wires, and were acclimated to culture media amended with arsenic concentrations, gradually increasing from 100 μg L−1 to 100 mg L−1. Acclimated bacteria with enhanced arsenic tolerance were used to remove arsenic from the aqueous solution. These bacteria belonged to Pseudomonas species according to 16S rRNA gene sequences. Extracellular enzymes produced by these bacteria played important roles in microbial Fe(II) oxidization and Fe oxide precipitation. Moreover, these bacteria survived and propagated in high arsenic condition (100 mg L−1 As). However, after As(III/V) acclimation, morphological characteristics of the bacteria showed some changes, e.g., shrinking of long bacillus. XRD (X-ray diffraction) patterns indicated that Fe oxide precipitations by Fe(II)-oxidizing bacteria in Fe-rich culture medium were poorly-crystallized ferrihydrites. Adsorption on the biogenic ferrihydrites greatly contributed to high arsenic removal efficiency of Fe(II)-oxidizing bacteria.  相似文献   

17.
A Gram-negative anaerobic bacterium, Citrobacter sp. NC-1, was isolated from soil contaminated with arsenic at levels as high as 5,000 mg As kg−1. Strain NC-1 completely reduced 20 mM arsenate within 24 h and exhibited arsenate-reducing activity at concentrations as high as 60 mM. These results indicate that strain NC-1 is superior to other dissimilatory arsenate-reducing bacteria with respect to arsenate reduction, particularly at high concentrations. Strain NC-1 was also able to effectively extract arsenic from contaminated soils via the reduction of solid-phase arsenate to arsenite, which is much less adsorptive than arsenate. To characterize the reductase systems in strain NC-1, arsenate and nitrate reduction activities were investigated using washed-cell suspensions and crude cell extracts from cells grown on arsenate or nitrate. These reductase activities were induced individually by the two electron acceptors. This may be advantageous during bioremediation processes in which both contaminants are present.  相似文献   

18.
19.
The purpose of this study was to develop a fungal bioremediation method that could be used for soils heavily contaminated with persistent organic compounds, such as polyaromatic hydrocarbons (PAHs). Sawmill soil, contaminated with PAHs, was mixed with composted green waste (1:1) and incubated with or without fungal inoculum. The treatments were performed at the laboratory and field scales. In the laboratory scale treatment (starting concentration 3500 mg kg−1, sum of 16 PAH) the high molecular weight PAHs were degraded significantly more in the fungal-inoculated microcosms than in the uninoculated ones. In the microcosms inoculated with Phanerochaete velutina, 96% of 4-ring PAHs and 39% of 5- and 6-ring PAHs were removed in three months. In the uninoculated microcosms, 55% of 4-ring PAHs and only 7% of 5- and 6-ring PAHs were degraded. However, during the field scale (2 t) experiment at lower starting concentration (1400 mg kg−1, sum of 16 PAH) the % degradation was similar in both the P. velutina-inoculated and the uninoculated treatments: 94% of the 16 PAHs were degraded in three months. In the field scale experiment the copy number of gram-positive bacteria PAH-ring hydroxylating dioxygenase genes was found to increase 1000 fold, indicating that bacterial PAH degradation also played an important role.  相似文献   

20.
Three bioreactors (two laboratory-scale and one on-site) were evaluated for their efficiency to reduce metal concentrations in water collected from the Plankenburg River, South Africa. Water (bioreactors one, two and on-site) and bioballs (bioreactors two and on-site) collected throughout the study periods were digested and analysed using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Aluminium (Al), nickel (Ni), and zinc (Zn) concentrations decreased from 0.41 mg l?1 to 0.06 mg l?1 (85%), 0.2 mg l?1 to 0.07 mg l?1 (65%) and 75 mg l?1 to 0.02 mg l?1 (97%), respectively (bioreactor one). Aluminium [(1.55–0.38 mg l?1 (75%)], copper (Cu) [57% (from 0.33 mg l?1 to 0.14 mg l?1)], iron (Fe) [71.99–40.4 mg l?1 (44%)] and manganese (Mn) [57% (0.07–0.03 mg l?1)] concentrations also decreased in the water samples from bioreactor two. In the on-site, six-tank bioreactor system, concentrations for Fe, Cu, Mn and Ni decreased, while Zn and Al concentrations increased. The concentrations recorded in biofilm samples were higher than the corresponding water samples. The bioballs employed in the bioreactor were thus shown to be efficient attachment surfaces for biofilm development and subsequent metal accumulation. Potentially metal-tolerant organisms (Pseudomonas sp., Sphingomonas sp., and Bacillus sp.) were also identified using phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号