首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize infected by aflatoxin‐producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers' income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination. However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agro‐ecological zones of Nigeria were used in this study. Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co‐inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non‐utilizing (nit?) mutants. To determine genetic diversity and distribution of VCGs across agro‐ecological zones, 832 nit? mutants from 52 locations in 11 administrative districts were paired with one self‐complementary nitrate auxotroph tester‐pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro‐ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5 = 0.96) of VCGs were high across all agro‐ecological zones. Ten VCGs (40%) had members restricted to the original location of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance > 400 km away. The present study identified widely distributed VCGs in Nigeria such as AV0222, AV3279, AV3304 and AV16127, whose atoxigenic members can be deployed for a region‐wide biocontrol of toxigenic isolates to reduce aflatoxin contamination in maize.  相似文献   

2.
Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains.  相似文献   

3.
Aflatoxin B1 is a potent hepatotoxin and carcinogen that poses a serious safety hazard to both humans and animals. Aspergillus flavus is the most common aflatoxin-producing species on corn, cotton, peanuts, and tree nuts. Application of atoxigenic strains to compete against aflatoxigenic strains of A. flavus has emerged as one of the most practical strategies for ameliorating aflatoxin contamination in food. Genes directly involved in aflatoxin biosynthesis are clustered on an 82-kb region of the genome. Three atoxigenic strains (CA12, M34, and AF123) were each paired with each of four aflatoxigenic strains (CA28, CA42, CA90, and M52), inoculated into soil and incubated at 28 °C for 2 weeks and 1 month. TaqMan probes, omtA-FAM, and norA-HEX were designed for developing a droplet digital PCR (ddPCR) assay to analyze the soil population of mixtures of A. flavus strains. DNA was extracted from each soil sample and used for ddPCR assays. The data indicated that competition between atoxigenic and aflatoxigenic was strain dependent. Variation in competitive ability among different strains of A. flavus influenced the population reduction of the aflatoxigenic strain by the atoxigenic strain. Higher ratios of atoxigenic to aflatoxigenic strains increased soil population of atoxigenic strains. This is the first study to demonstrate the utility of ddPCR to quantify mixtures of both atoxigenic and aflatoxigenic A. flavus strains in soil and allows for rapid and accurate determination of population sizes of atoxigenic and aflatoxigenic strains. This method eliminates the need for isolation and identification of individual fungal isolates from experimental soil samples.  相似文献   

4.
Aspergillus flavus strains were isolated frompeanut fields of Liaoning, Shandong, Hubei and Guangdong Provinces in China, and identified through phenotypic and molecular approaches. Of the 323 A. flavus strains isolated, 76 strains did not produce aflatoxins detectable by UPLC. The incidence of atoxigenic A. flavus strains decreased with increase in temperature and increased with increase in latitude in different geographical locations. Amplification of all the aflatoxin genes in the aflatoxin gene cluster in the atoxigenic isolates showed that there were 25 deletion patterns (A–Y), with 22 deletion patterns identified for the first time. Most of the atoxigenic A. flavus isolates with gene deletions (97%) had deletions in at least one of the four genes (aflT, nor-1, aflR, and hypB), indicating that these four genes could be targeted for rapid identification of atoxigenic strains. The atoxigenic isolates with gene deletions, especially the isolates with large deletions, are potential candidates for aflatoxin control.  相似文献   

5.
《Fungal Ecology》2008,1(2-3):102-106
The effect of temperature and different solute (Ψs) and matric potentials (Ψm) on growth and sporulation of three aflatoxigenic strains of Aspergillus flavus isolated from contaminated maize in northern Italy was determined. The Ψs of maize-based media were modified ionically (NaCl) and non-ionically (glycerol) and the Ψm with PEG 8000 in the range −1.4 to −21.0 MPa at 25 and 30 °C. Both temperature and Ψs/Ψm stress had statistically significant effects on growth rates of the three strains. Faster growth occurred at 30 °C and −1.4 and −2.8 MPa. A. flavus strains were more sensitive to Ψm than Ψs stress with limits of −9.8 MPa and −14 to−18 MPa, respectively. Sporulation was significantly influenced by Ψs potential, solute type and temperature. This suggests that these aflatoxigenic strains of A. flavus isolated from aflatoxin-contaminated maize are probably able to colonise crop debris rapidly at prevailing temperatures and water stress conditions. This type of information on the ecology of aflatoxin producing A. flavus strains isolated in Italy will contribute to the development of a systems model to predict their activity in crop residue and colonisation of maize grain.  相似文献   

6.
The report presents a rapid, inexpensive and simple method for monitoring indels with influence on aflatoxin biosynthesis within Aspergillus flavus populations. PCR primers were developed for 32 markers spaced approximately every 5 kb from 20 kb proximal to the aflatoxin biosynthesis gene cluster to the telomere repeat. This region includes gene clusters required for biosynthesis of aflatoxins and cyclopiazonic acid; the resulting data were named cluster amplification patterns (CAPs). CAP markers are amplified in four multiplex PCRs, greatly reducing the cost and time to monitor indels within this region across populations. The method also provides a practical tool for characterizing intraspecific variability in A. flavus not captured with other methods.

Significance and Impact of the Study

Aflatoxins, potent naturally‐occurring carcinogens, cause significant agricultural problems. The most effective method for preventing contamination of crops with aflatoxins is through use of atoxigenic strains of Aspergillus flavus to alter the population structure of this species and reduce incidences of aflatoxin producers. Cluster amplification pattern (CAP) is a rapid multiplex PCR method for identifying and monitoring indels associated with atoxigenicity in A. flavus. Compared to previous techniques, the reported method allows for increased resolution, reduced cost, and greater speed in monitoring the stability of atoxigenic strains, incidences of indel mediated atoxigenicity and the structure of A. flavus populations.  相似文献   

7.
Important staple foods (peanuts, maize and rice) are susceptible to contamination by aflatoxin (AF)-producing fungi such as Aspergillus flavus. The objective of this study was to explore non-aflatoxin-producing (atoxigenic) A. flavus strains as biocontrol agents for the control of AFs. In the current study, a total of 724 A. flavus strains were isolated from different regions of China. Polyphasic approaches were utilized for species identification. Non-aflatoxin and non-cyclopiazonic acid (CPA)-producing strains were further screened for aflatoxin B1 (AFB1) biosynthesis pathway gene clusters using a PCR assay. Strains lacking an amplicon for the regulatory gene aflR were then analyzed for the presence of the other 28 biosynthetic genes. Only 229 (32%) of the A. flavus strains were found to be atoxigenic. Smaller (S) sclerotial phenotypes were dominant (51%) compared to large (L, 34%) and non-sclerotial (NS, 15%) phenotypes. Among the atoxigenic strains, 24 strains were PCR-negative for the fas-1 and aflJ genes. Sixteen (67%) atoxigenic A. flavus strains were PCRnegative for 10 or more of the biosynthetic genes. Altogether, 18 new PCR product patterns were observed, indicating great diversity in the AFB1 biosynthesis pathway. The current study demonstrates that many atoxigenic A. flavus strains can be isolated from different regions of China. In the future laboratory as well as field based studies are recommended to test these atoxigenic strains as biocontrol agents for aflatoxin contamination.  相似文献   

8.
Background: Golestan province in northeastern Iran has been known as a high-risk area for esophageal cancer (EC). This study was conducted to assess aflatoxin (AF) contamination of wheat flour (WF) samples in high and low EC-risk areas of Golestan province. Methods: Four WF samples were collected randomly from each of 25 active silos throughout the province in 2009. The levels of AFs were measured using the High-performance liquid chromatography method. Using the data of EC rates obtained from Golestan population-based cancer registry, the province was divided into high and low risk areas for EC. Student t-test and multivariate regression analysis were used to compare the levels of aflatoxins as well as the condition of silos between the two areas. Results: One hundred WF samples were collected. The mean levels of total aflatoxin and aflatoxin B1 was 1.99 and 0.53 ng g?1, respectively. The levels of total AF (p = 0.03), AFG2 (p = 0.02) and AFB1 (p = 0.003) were significantly higher in samples obtained from high risk area. Multivariate regression analysis showed that humidity of silo was the most important source of difference between silos of the two areas (p = 0.04). Conclusion: We found a positive relationship between AF level of WF samples and the risk of EC. So, AF contamination may be a possible risk factor for EC in our region. We also found that humidity of silos was the most important determinant of AF contamination of WF. Intensive control of silos conditions including humidity and temperature are needed especially in high EC-risk areas.  相似文献   

9.
The effects of the natural phytochemicals trans-cinnamic acid (CA) and ferulic acid (FA) at concentrations of 1–20 mM (CA) and 1–25 mM (FA) on sclerotial production by Aspergillus flavus and Aspergillus parasiticus were evaluated. Studies on sclerotium number and size were carried out in different growth media and water potentials (MPa). High concentrations of CA (20 mM, ?0.75 MPa; 10 mM, ?3.5 MPa) and FA (10, 20, 25 mM, ?0.75 and ?3.5 MPa) significantly reduced sclerotial production of Aspergillus strains. Overall, CA at concentrations of 10 and 20 mM on Czapek Dox medium (CD), maize meal extract agar (MMEA) and maize meal extract agar with sucrose and NaNO3 (MMEA S/N) inhibited sclerotium most in the four species assayed. The data show that the sclerotia characteristics of A. flavus and A. parasiticus were influenced by natural phytochemicals and modifications of growth media and water potential. CA and FA could be used at high concentrations to prevent the survival of Aspergillus species in grain.  相似文献   

10.
Aims: The objectives of this study were to assess the genetic relationships between toxigenic and atoxigenic isolates of Aspergillus flavus collected from peanut fields in China, and to analyse deletions within the aflatoxin biosynthetic gene cluster for the atoxigenic isolates. Methods and Results: Analysis of random‐amplified polymorphic DNA and microsatellite‐primed PCR data showed that the toxigenic and atoxigenic isolates of A. flavus were not clustered based on their regions and their ability of aflatoxin and sclerotial production. These results were further supported by DNA sequence of ITS, pksA and omtA genes. PCR assays showed that 24 of 35 isolates containing no detectable aflatoxins had the entire aflatoxin gene cluster. Eleven atoxigenic isolates had five different deletion patterns in the cluster. Conclusions: Toxigenic and atoxigenic isolates of A. flavus are genetically similar, but some atoxigenic isolates having deletions within the aflatoxin gene cluster can be identified readily by PCR assays. Significance and Impact of the Study: Because the extensive deletions within the aflatoxin gene cluster are not rare in the atoxigenic isolates, analysis of deletion within the cluster would be an effective method for the rapid screening of atoxigenic isolates for developing biocontrol agents.  相似文献   

11.
12.
13.
Genetic exchange by asexual filamentous fungi is presumed to be limited to isolates in the same vegetative compatibility group (VCG). To evaluate genetic isolation of Aspergillus flavus due to vegetative incompatibility, three gene regions were chosen that contained closely spaced nucleotides that were polymorphic among some of the six VCGs examined. A member of each VCG was collected from five regions across the southern United States. Isolates belonging to the same VCG had similar sets of single nucleotide polymorphisms regardless of isolate origin. The six VCGs formed four genetically distinct groups. Although recombination between certain pairs of VCGs could not be excluded, none was found for YV36, the VCG that includes the atoxigenic A. flavus isolate currently used to mitigate aflatoxin contamination in cotton in Arizona.  相似文献   

14.
Aflatoxin contamination of major food crops is a serious problem in Senegal. Maize and sesame samples were collected during a survey in five districts located in two agro‐ecological zones in Senegal to determine levels of aflatoxin contamination and the distribution and toxigenicity potential of members of Aspergillus section Flavi. Maize samples from the Guinea Savannah zone (SG) exhibited lower aflatoxin content and colony‐forming units (cfu) than those collected from the Sudan Savannah (SS) zone. In maize, aflatoxin concentration and cfu of A. flavus varied with cultivars, shelling practices and storage methods. The maize variety ‘Jaune de Bambey’ had high aflatoxin levels in both agro‐ecological zones. Aflatoxin content in machine‐shelled maize (120 ng/g) was more than 10‐fold higher than that in manually shelled (8 ng/g) or unshelled maize. Aflatoxin content (between 0.1 and 1.2 ng/g) and cfu values (between 13 and 42 000 cfu/g) of sesame were low, suggesting a low susceptibility to A. flavus. In both agro‐ecological zones, and in all storage systems, aflatoxin contamination was lower in sesame than in maize. In this study, only three species of Aspergillus section Flavi (A. flavus, A. tamarii and the unnamed taxon SBG) were observed with the frequency of toxigenic strains remaining below 50% in maize from the SG zone compared with 51% of isolates from samples collected in Sedhiou district in SS zone. The proportion of toxigenic strains isolated from sesame was variable. For both crops, L‐strains were the most prevalent in the two agro‐ecological zones. Some of the atoxigenic strains collected could be valuable microbial resources for the biological control of aflatoxin in Senegal.  相似文献   

15.
Human populations in Kenya are repeatedly exposed to dangerous aflatoxin levels through consumption of contaminated crops. Biocontrol with atoxigenic Aspergillus flavus is an effective method for preventing aflatoxin in crops. Although four atoxigenic A. flavus isolates (C6E, E63I, R7H and R7K) recovered from maize produced in Kenya are registered as active ingredients for a biocontrol product (Aflasafe KE01) directed at preventing contamination, natural distributions of these four genotypes prior to initiation of commercial use have not been reported. Distributions of the active ingredients of KE01 based on haplotypes at 17 SSR loci are reported. Incidences of the active ingredients and closely related haplotypes were determined in soil collected from 629 maize fields in consecutive long and short rains seasons of 2012. The four KE01 haplotypes were among the top ten most frequent. Haplotype H-1467 of active ingredient R7K was the most frequent and widespread haplotype in both seasons and was detected in the most soils (3.8%). The four KE01 haplotypes each belonged to large clonal groups containing 27–46 unique haplotypes distributed across multiple areas and in 21% of soils. Each of the KE01 haplotypes belonged to a distinct vegetative compatibility group (VCG), and all A. flavus with haplotypes matching a KE01 active ingredient belonged to the same VCG as the matching active ingredient as did all A. flavus haplotypes differing at only one SSR locus. Persistence of the KE01 active ingredients in Kenyan agroecosystems is demonstrated by detection of identical SSR haplotypes six years after initial isolation. The data provide baselines for assessing long-term influences of biocontrol applications in highly vulnerable production areas of Kenya.  相似文献   

16.
《Microbiological research》2014,169(4):294-300
The effectiveness of aqueous extracts of various medicinal plants in detoxification of aflatoxin B1 (AFB1) was tested in vitro by thin-layer chromatography and enzyme-linked immunosorbent assay (ELISA). Among the different plant extracts, the leaf extract of Vasaka (Adhatoda vasica Nees) showed the maximum degradation of AFB1 (≥98%) after incubation for 24 h at 37 °C. The aflatoxin detoxifying activity of the A. vasica leaf extract was significantly reduced by heating to 100 °C for 10 min or autoclaving at 121 °C for 20 min. Dialysis had no effect on aflatoxin detoxifying ability of A. vasica extract and the dialyzed extract showed similar level of detoxification of AFB1 as that of the untreated extract. A time course study of aflatoxin detoxification by A. vasica extract showed that 69% of the toxin was degraded within 6 h and ≥95% degradation was observed after 24 h of incubation. Detoxification of AFB1 by A. vasica extract was further confirmed by liquid chromatography–mass spectrometry (LC–MS) analysis. Phytochemical analysis revealed the presence of alkaloids in methanolic extract of A. vasica leaves. A partially purified alkaloid from A. vasica leaves by preparative TLC exhibited strong AFB1 detoxification activity.  相似文献   

17.
Agricultural activities involve daily use of maize silage as feed for livestock, which can be contaminated by mycotoxigenic molds. To evaluate fungal contamination, and the production of mycotoxins in maize silage we propose a multi-disciplinary approach utilizing PCR methods with genes of the aflatoxin (ver-1, omt-1 and apa-2), fumonisin (FUM1) and trichothecene (TRI6) biosynthesis pathways. To detect Aspergillus fumigatus, a 26S/intergenic spacer region of the rDNA complex was amplified. These specific PCR assays allowed three major groups of toxigenic fungi-like aflatoxin-producing Aspergilli, fumonisin and trichothecene-producing Fusaria, and the ubiquitous mold A. fumigatus, to be targeted. A multimycotoxin method is also proposed to simultaneously quantify seven mycotoxins (i.e., aflatoxin B1, citrinin, deoxynivalenol, fumonisin B1, gliotoxin, ochratoxin A, zearalenone) in maize silage by high-performance liquid chromatography coupled to mass spectrometry (HPLC–MS). These microbiological and analytical tools revealed three potentially toxigenic groups of fungi and A. fumigatus grown from mature maize silage (11 month old) that was collected in Normandy (France) and the mycotoxins aflatoxin B1 (7.0–51.3 μg/kg), citrinin (10.1–14.2 μg/kg), deoxynivalenol (128.0–181.0 μg/kg) and gliotoxin (6.6–11.9 μg/kg). Results indicate that the combination of PCR and HPLC–MS can be used to assess fungal quality of maize silages.  相似文献   

18.
Summary  Aflatoxins, highly toxic and carcinogenic compounds that frequently contaminate foods and feeds, are produced by several genera in the genusAspergillus. Aspergillus flavus, the most common species causing crop contamination, is a common inhabitant of the Sonoran desert of North America where it resides in complex communities composed of diverse individuals. This diversity reflects divergent adaptation to various ecological niches. SomeA. flavus isolates that are well adapted to plant associated niches do not produce aflatoxins yet have the capacity to competitively exclude aflatoxin producers. These atoxigenic strains can serve as biological control agents for management of aflatoxins in crops. Detailed knowledge of the ecology of aflatoxin-producing fungi may lead to novel practical methods for limiting contamination. Presented at the EU-USA Bilateral Workshop on Toxigenic Fungi & Mycotoxins, New Orleans, USA, July 5–7, 2005.  相似文献   

19.
The hypothesis tested in this study was if medicinal plants could be grown as alternative crops in heavy metal polluted soils without contamination of the final marketable produce. Furthermore, medicinal crops may offer a phytoremediation option for mildly heavy metal polluted agricultural soils. The effect of metal-enriched soils was evaluated in five medicinal species (Bidens tripartita L., Leonurus cardiaca L., Marrubium vulgare L., Melissa officinalis L. and Origanum heracleoticum L.). Soils were sampled in the vicinities of the Non-Ferrous Metals Combine (Pb–Zn smelter) near Plovdiv, Bulgaria, from plots at 0.5 km (soil 1), 3 km (soil 2), 6 km (soil 3) and 9 km (control soil) from the smelter. Cadmium, Pb and Zn concentration in soil 1 were above the critical total (HNO3-extractable) concentrations for these elements in soils. Generally, heavy metals in soil 1 decreased dry mater yields of the five species relative to the control. However, the essential oil content of M. vulgare, M. officinalis and O. heracleoticum was within the usual range for respective species and was not affected by the treatments. The overall metal uptake was in the order: B. tripartita > M. vulgare > O. heracleoticum > L. cardiaca > M. officinalis for Cd, L. cardiaca = M. vulgare > B. tripartita = M. officinalis = O. heracleoticum for Pb, L. cardiaca = M. vulgare > O. heracleoticum > B. tripartita = M. officinalis for Cu and B. tripartita > L. cardiaca = M. vulgare > M. officinalis = O. heracleoticum for Mn and Zn. Overall, metal concentration in plant parts was in the order: roots > leaves > flowers > stems for Cd, Pb and Cu, leaves > roots > flowers > stems for Mn and Zn. The concentration of Cd, Pb, Cu and Zn in plant tissue correlated to the exchangeable (EXCH) and the carbonate (CARB) bound fractions of metals in soil. Heavy metals caused disruptions of the plasma membrane of some root cortical cells and alterations in chloroplasts thylakoids in plants grown in soil 1. Metal content in teas prepared from the species was negligible, the essential oils were free of metals. Generally, the transfer factor (TF) was less than 1, indicating the tested species did not have a significant phytoextraction potential. This study demonstrated the three essential oil species M. vulgare, M. officinalis and O. heracleoticum can be grown as alternative high-value crops in metal polluted agricultural soils around the smelter and provide metal-free marketable produce.  相似文献   

20.
In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号