首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in plant species richness across environmental and temporal gradients have often been explained by the intermediate disturbance hypothesis and a unimodal diversity–productivity relationship. We tested these predictions using two sets of mountain plant communities assembled along postglacial successional and snow depth (disturbance and stress) gradients in maritime Kamchatka. In each community, we counted the number of species in plots of increasing sizes (0.0025–100 m2) and analyzed them using species–area curves fitted by the Arrhenius power function and the Gleason logarithmic function. A comparison of successional communities along a 270-year-old moraine chronosequence behind the receding Koryto Glacier—representing gradients of increasing productivity and resource competition—confirmed the unimodal species richness pattern. The plant diversity peaked in a 60–80-year-old SalixAlnus stand where light availability was sufficient to sustain a rich understory combining pioneer and late successional herbs. The closed Alnus canopy on older moraines caused a pronounced decrease in species richness for all plot sizes (interactive stage 80–120 years since deglaciation). A slight increase in species richness in the oldest assortative stages (120–270 years), when Alnus stands are mature, was found only at the smaller spatial scales. This reflects (i) the consolidation of clonal understory dominants and (ii) the absence of other woody species such as Betula ermanii whose invasion would eliminate Alnus and increase diversity at larger spatial scales. A comparative study of major mountain plant communities distributed above the Koryto Glacier foreland did not confirm the highest species richness at intermediate levels of disturbance and stress. Contrary to our expectation, the species richness was highest in alpine tundra and snowbed communities, which are subjected to severe winter frost and a short summer season, while less disturbed communities of subalpine meadows, heaths, and Betula ermanii woods were less species-rich. We attribute this pattern to differences in habitat area and species pool size.  相似文献   

2.
Since 1985, originally forested mountainous areas of China have been allowed to return to their natural state after years of exploitation including agriculture, development, and logging. The reforms began earlier in less accessible locations, so that today the successional process is more advanced there. The vegetation in Luquan, Qiongzhusi, and Xishan near Kunming, central Yunnan, exhibits, in a limited area, a range of stages of plant succession that are widely encountered throughout the broader region, and thus affords a special opportunity for a comprehensive study. We analyzed the successional sequence of these various plant communities. They ranged from pioneer coniferous and/or pioneer deciduous broad-leaved stands to pre-mature semi-humid evergreen broad-leaved stands, through mixed coniferous and broad-leaved or mixed deciduous and evergreen broad-leaved stands. The succession proceeded from pioneer coniferous Pinus and Keteleeria, and deciduous Platycarya and Alnus, to late-successional evergreen broad-leaved Cyclobalanopsis and Castanopsis. Two regeneration types of woody species in either the early successional (15–50 years), the mid-successional (40–80 years), or the late-successional (80–180 years) stage were classified. Relatively high species diversity was found in the seral phase at the three study sites. The late-successional stage was commonest where human disturbance was least evident. Poor soil chemical properties under pioneer Pinus were seen as a limitation to plant growth, while the abundance of Alnus at the early stage led to an improved level of organic matter and nitrogen.  相似文献   

3.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

4.
Patterns of woody plants dispersal in a semi-arid nature reserve situated in Eastern Transvaal, South Africa, revealed that trees have spread from core areas and converted previously open grasslands to densely vegetated woodlands. These patterns were found in catchment areas of the gently undulating terrain which characterizes the region.Two plant communities dominated by Acacia senegal-Acacia tortilis and Euclea divinorum-Acacia nilotica were distinguished. Analysis of nearest-neighbour distances, dispersal patterns of seedlings and mature woody plants identified successional processes. These were manifested through intra and interspecific competition among the dominant tree species. Within each plant community, a transition of relative abundance was occurring namely, A. senegal became dominant in areas previously dominated by A. tortilis while E. divinorum was replacing previous A. nilotica dominance.Comparative assessment of the two plant communities was facilitated by the summary of competition and seedling dispersal indices in a multivariate analysis. Results indicated that tree species had characteristic dispersal strategies. Identification the patterns of woody plants establishment could advance the evaluation of successional dynamics and management of savannas in areas prone to bush encroachment.  相似文献   

5.
《Acta Oecologica》2000,21(3):193-201
The aim of this research is to reconstruct the invasion history of sites by using core sampling and analysing the installation date of tree species. A total of 107 sample sites, abandoned since 0 to 45 years ago and distributed in eight valleys of central Corsica, were studied. Results show a high (r2 = 0.86 P < 0.0001) correlation between the abandonment date derived from historic aerial photographs and the age of the oldest woody specimen in the site. For recent abandonment periods, the oldest woody species present in sample plots were grazing tolerant shrubs (short-lived species). When the abandonment period exceeded 20 years, the oldest species in sample plots were long-lived tree species. The use of category (short or long-lived species) and age of oldest woody species of sites allow to create a quantitative estimation of abandonment period available without old aerial photographs. This new chronological variable is relevant for studying intermediate (one to several decades) periods of abandonment in secondary succession processes. The use of such variable allows the analysis of succession of vegetal communities or the establishment of the dynamical response curves of species.  相似文献   

6.
This study examined the main changes in the herbaceous communities during the first four years of succession in a large landslide on Casita Volcano, Nicaragua, located in a densely populated area that has a tropical dry climate. Our main objective was to determine the major pathways of change in community features, such as richness, biovolume, species composition, and abundances of plant traits and to verify if they varied between the different landslide areas based on abiotic heterogeneity and landscape context. Number, percent cover, mean height and traits of herbaceous species, and several abiotic factors related to fertility and geomorphological stability of substrates were sampled in 28 permanent plots. Environmental heterogeneity strongly influenced early successional changes in the herbaceous communities during the four years of the study. Biovolume increased in the unstable and infertile areas and decreased in the stable and fertile landslide areas. In most zones, species richness decreased significantly because of the expansion of a few dominant species that developed a large cover and excluded other species. Those dominant species were mainly responsible for changes in species composition and included annual forbs, e.g., Calopogonium mucunoides and Stizolobium pruriens, graminoids that have rhizomes or stolons, e.g., Hyparrhenia rufa, and perennial nitrogen-fixing forbs, e.g., Clitoria ternatea. They might be important in determining future successional patterns on the Casita Volcano landslide.  相似文献   

7.
《Acta Oecologica》2004,25(1-2):1-6
The aboveground biomass of three woody species (Cistus albidus, Quercus coccifera and Pinus halepensis) in two early successional stages (3- and 10-year old) of a post-fire Mediterranean ecosystem was investigated. Among these three species, which belong to the successional series of holm oak (Quercus ilex), C. albidus and Q. coccifera are two dominant shrub species in the garrigue ecosystem and P. halepensis is a pioneer tree species widely represented in the Mediterranean area. The results obtained showed that in monospecific stands, C. albidus and Q. coccifera had a high recovery potential. In the 3-year-old stands, the cover of P. halepensis was only 19.8% for a total biomass of 0.75 ± 0.21 t ha–1, while the plant cover of C. albidus and Q. coccifera was, respectively, 26% and 85.5% and biomass was 4.72 ± 1.09 and 11.5 ± 0.16 t ha–1. Only 10 years after fire, the plant cover of C. albidus and Q. coccifera was, respectively, 55% and 100% and total biomass 13.2 ± 1.7 and 35.8 ± 4.7 t ha–1. The greatest increase in biomass was noted for P. halepensis (29.7 t ha–1). If mean annual biomass increments are considered, it appears that there was a significant decrease with the stand age for the two shrub species although the tree species showed an increase in productivity. These differing patterns in biomass and productivity of shrub and tree species with stand age provide information on biomass accumulation rates of pioneer species in a Mediterranean succession and their importance in the vegetation dynamics.  相似文献   

8.
Prescribed fires often stimulate short-term productivity of grasslands that influences use by large, grazing herbivores. But studies examining burning effects on large herbivore population dynamics while simultaneously considering other environmental factors that might also influence population dynamics are lacking. We examined the influences of burned area, precipitation during the growing season, and possible distributional shifts from a nearby public hunt on maximum intrinsic rate of population growth (rmax) and environmental carrying capacity (K). We examined the influences of these predictors in a Roosevelt elk (Cervus elaphus roosevelti) population studied across 43 years where abundances ranged from 4 to 322 animals and prescribed fires ranged from 14 to 891 ha of burned area in Redwood National and State Parks, California, USA. The highest count across surveys conducted in a year was our index of elk (females, juveniles, subadult males) abundance. We estimated Ricker type models in a hierarchical, state-space formulation that separated observer error from process variation. We found a slight influence from burned area on both rmax and K but a stronger influence from precipitation during the growing season. The lack of a substantial effect from burned area on elk population parameters might be from a variety of factors such as spatial and temporal variation in intensity of prescribed fires and weak density dependence. Nonetheless, one positive benefit to elk population processes was that the patchwork of burning retarded encroachment of woody plants into forage habitat and, thus, maintained a constant area of forage habitat across 43 years.  相似文献   

9.
Successful invaders must overcome biotic resistance, which is defined as the reduction in invasion success caused by the resident community. Soil microbes are an important source of community resistance to plant invasions, and understanding their role in this process requires urgent investigation. Therefore, three forest communities along successional stages and four exotic invasive plant species were selected to test the role of soil microbes of three forest communities in resisting the exotic invasive plant. Our results showed that soil microbes from a monsoon evergreen broadleaf forest (MEBF) (late-successional stage) had the greatest resistance to the invasive plants. Only the invasive species Ipomoea triloba was not sensitive to the three successional forest soils. Mycorrhizal fungi in early successional forest Pinus massonina forest (PMF) or mid-successional forest pine-broadleaf mixed forest (PBMF) soil promoted the growth of Mikania micrantha and Eupatorium catarium, but mycorrhizal fungi in MEBF soil had no significant effects on their growth. Pathogens plus other non-mycorrhizal microbes in MEBF soil inhibited the growth of M. micrantha and E. catarium significantly, and only inhibited root growth of E. catarium when compared with those with mycorrhizal fungi addition. The study suggest that soil mycorrhizal fungi of early-mid-successional forests benefit invasive species M. micrantha and E. catarium, while soil pathogens of late-successional forest may play an important role in resisting M. micrantha and E. catarium. The benefit and resistance of the soil microbes are dependent on invasive species and related to forest succession. The study gives a possible clue to control invasive plants by regulating soil microbes of forest community to resist plant invasion.  相似文献   

10.
Advanced recruitment and neutral processes play important roles in determining tree species composition in tropical forest canopy gaps, with few gaps experiencing clear secondary successional processes. However, most studies are limited to the relatively limited spatial scales provided by forest inventory plots, and investigations over the entire range of gap size are needed to better understand how ecological processes vary with tree mortality events. This study employed a landscape approach to test the hypothesis that tree species composition and forest structural attributes differ between large blowdown gaps and relatively undisturbed primary forest. Spectral mixture analysis on hyperspectral satellite imagery was employed to direct field sampling to widely distributed sites, and blowdown plots were compared with undisturbed primary forest plots. Tree species composition and forest structural attributes differed markedly between gap and non-gap sites, providing evidence of niche partitioning in response to disturbance across the region. Large gaps were dominated by classic Neotropical pioneer genera such as Cecropia and Vismia, and average tree size was significantly smaller. Mean wood density of trees recovering in large gaps (0.55 g cm−3) was significantly lower than in primary forest plots (0.71 g cm−3), a difference similar to that found when comparing less dynamic (i.e., tree recruitment, growth, and mortality) Central Amazon forests with more dynamic Western Amazon forests. Based on results, we hypothesize that the importance of neutral processes weaken, and niche processes strengthen, in determining community assembly along a gradient in gap size and tree mortality intensity. Over evolutionary time scales, pervasive dispersal among colonizers could result in the loss of tree diversity in the pioneer guild through competitive exclusion. Results also underscore the importance of considering disturbance processes across the landscape when addressing forest carbon balance.  相似文献   

11.
Barrier islands shrub thickets, the dominant woody community of many Atlantic coast barrier islands, are very sensitive to changes in the freshwater lens and thus, constitute a strong indicator of summer drought. NDVI was computed from airborne images and multispectral images on Hog Island (VA, USA) to evaluate summer growing season changes in woody communities for better predictions of climate change effects. Patterns of NDVI were compared year to year and monthly relative to precipitation and water table depth at the appropriate temporal scale. The highest absolute values of NDVI as well as the larger surface covered by woody vegetation (NDVI > 0.5) occurred in the wet year (2004) with a bimodal distribution of NDVI values (around 0.65 and 0.9) while both dry years (2007 and 2008) showed similar values in maximum, mean and standard deviation and unimodal distributions (around 0.75) of NDVI values. Positive linear adjustments were obtained between maximum (r2 > 0.9) and mean NDVI (r2 > 0.87) and the accumulated rainfall in the hydrological year and the mean water table depth from the last rainfall event till the date of the image acquisition. The spatial variations revealed that water table depth behaved different in wet and dry years. In dry years there was a remarkable increase in mean and maximum values linearly related to water table depth. The highest slope of the adjustment in 2007 indicated a sharp response of vegetation in the driest year. Monthly series of NDVI showed the major role of lack of precipitation through July and August in 2007 with missing classes of NDVI above 0.8 and unimodal distributions in mid-late summer. Best linear fits (r2 close to 1) were obtained with rainfall at different temporal scales: accumulated rainfall in the hydrological year 2004 and accumulated rainfall in the last month previous to the date of 2007 image. Thus, in dry years productivity is closely related to water available from recent past as opposed to over the year for wet years. Good fits (r2 values higher than 0.88) were obtained between monthly decrease in water table depth and NDVI variables just in the dry year. These results demonstrate the important feedback between woody vegetation response to changes in the freshwater lens using empirical data and could apply to other systems with strong directional gradients in resources.  相似文献   

12.
13.
Although tree ferns are an important component of temperate and tropical forests, very little is known about their ecology. Their peculiar biology (e.g., dispersal by spores and two-phase life cycle) makes it difficult to extrapolate current knowledge on the ecology of other tree species to tree ferns. In this paper, we studied the effects of negative density dependence (NDD) and environmental heterogeneity on populations of two abundant tree fern species, Cyathea caracasana and Alsophila engelii, and how these effects change across a successional gradient. Species patterns harbor information on processes such as competition that can be easily revealed using point pattern analysis techniques. However, its detection may be difficult due to the confounded effects of habitat heterogeneity. Here, we mapped three forest plots along a successional gradient in the montane forests of Southern Ecuador. We employed homogeneous and inhomogeneous K and pair correlation functions to quantify the change in the spatial pattern of different size classes and a case–control design to study associations between juvenile and adult tree ferns. Using spatial estimates of the biomass of four functional tree types (short- and long-lived pioneer, shade- and partial shade-tolerant) as covariates, we fitted heterogeneous Poisson models to the point pattern of juvenile and adult tree ferns and explored the existence of habitat dependencies on these patterns. Our study revealed NDD effects for C. caracasana and strong environmental filtering underlying the pattern of A. engelii. We found that adult and juvenile populations of both species responded differently to habitat heterogeneity and in most cases this heterogeneity was associated with the spatial distribution of biomass of the four functional tree types. These findings show the effectiveness of factoring out environmental heterogeneity to avoid confounding factors when studying NDD and demonstrate the usefulness of covariate maps derived from mapped communities.  相似文献   

14.
Understanding the factors driving the variation in urban green space and plant communities in heterogeneous urban landscapes is crucial for maintaining biodiversity and important ecosystem services. In this study, we used a combination of field surveys, remote sensing, census data and spatial analysis to investigate the interrelationships among geographical and social-economic variables across 328 different urban structural units (USUs) and how they may influence the distributions of urban forest cover, plant diversity and abundance, within the central urban area of Beijing, China. We found that the urban green space coverage varied substantially across different types of USUs, with higher in agricultural lands (N = 15), parks (N = 46) and lowest in utility zones (N = 36). The amount of urban green space within USUs declines exponentially with the distance to urban center. Our study suggested that geographical, social and economic factors were closely related with each other in urban ecological systems, and have important impacts on urban forest coverage and abundance. The percentage of forest as well as high and low density urban areas were mainly responsible for variations in the data across all USUs and all land use/land cover types, and thus are important constituents and ecological indicators for understanding and modeling urban environment. Herb richness is more strongly correlated with tree and shrub density than with tree and shrub richness (r = −0.472, p < 0.05). However, other geographic and socioeconomic factors showed no significant relationships with urban plant diversity or abundance.  相似文献   

15.
L. E. Hurd  W. F. Fagan 《Oecologia》1992,92(2):215-221
Summary The structure of cursorial spider assemblages was examined along a gradient of four temperature successional communities. Species diversity (H), richness (S), and evenness (J) exhibited a dichotomy between herbaceous and woody communities rather than a progressive change with community age: all three parameters were higher in the two younger fields than in the two older woodlands, which is contrary to conventional successional theory. Species importance curves were steeper in the two woody communities. The breadth of the distribution of adult body lengths was greater in the two herbaceous communities. Indices of community similarity revealed neither a successional trend nor the vegetative dichotomy. We suggest the hypothesis that habitat structure is a more important determinant of cursorial spider diversity than successional age per se, and that the switch in dominance from herbaceous to woody vegetation is the critical change. We further suggest that competition for prey is more important to cursorial spiders in early successional (herbaceous) communities, because of a switch in the limiting resource from prey in these communities to the amount of accumulating litter (a spatial resource) in older woody stands. This may explain the greater variation in adult body size of these generalist predators in the two younger communities.  相似文献   

16.
This study explores spatio-temporal changes in epibenthic communities due to salmon aquaculture at deep (>30 m), hard-bottom dominated sites in Newfoundland (Canada). Using a drop-camera approach, we followed changes with production at two aquaculture sites, as well as potential recovery processes at two fallow sites, comparing their epibenthic composition with nearby non-production sites. Multivariate analysis revealed that aquaculture production led to rapid changes in epibenthic communities, as evidenced primarily by the presence of two visual indicators: bacterial mats and opportunistic polychaetes. Due to low taxon richness and abundances, as well as variability among sites, no clear intermediate successional stages were apparent. Beggiatoa-like mats and opportunistic polychaetes appeared rapidly once aquaculture production began; these indicators did not increase in spatial extent during the survey and were typically observed up to 100 m, and occasionally up to 160 m from cages. After 15 months of fallowing, Beggiatoa-like mats and opportunistic polychaetes remained present at sites and were occasionally accompanied by few other taxa, suggesting incomplete recovery.  相似文献   

17.
Patterns and drivers of succession provide insight into the mechanisms that govern community assembly, but remain poorly understood for microbial communities. We assess whether successional trends of trees are mirrored by foliar endophyte communities of three tree species across a deterministic woody successional gradient. Additionally, we test the relative contribution of abiotic predictors, biotic factors, and spatial distance between sites in predicting composition and richness of endophyte communities. Unlike the tree community, endophyte communities showed no consistent evidence of deterministic succession. Host identity was the most important factor structuring endophyte community composition; within hosts, spatial distance from the indigenous forest and between samples was important, while environmental predictors had small and inconsistent effects. Much variation in endophyte composition remained unexplained. In contrast, endophyte richness was well-explained by predictor variables. Host identity was most important in predicting endophyte richness, while the effect of other predictors on richness differed between host species. We conclude that deterministic succession in trees did not result in deterministic succession in endophyte communities; instead community assembly was most strongly influenced by host identity; while within hosts, neutral processes may be more important for endophyte assembly than deterministic factors.  相似文献   

18.
The ingression of woody plants into the grassy layer of savannas and grasslands has become a global concern. The increase of woody plants has been primarily attributed over grazing, fire and more recently to the increase of atmospheric CO2. We used long-term observations and analyses to assess changes in woody vegetation in Ithala Game Reserve (IGR), South Africa. Textural analysis of aerial photographs was used to detect changes in woody vegetation, from 1943 to 2007 in Ithala Game Reserve (IGR), South Africa. Daily rainfall data from 1905 to 2009 were used in a time-series analysis to determine if rainfall patterns have changed. The time-series analysis showed that the low magnitude (0–10 mm) rainfall events decreased from 1916 to 2009 and high magnitude rainfall events increased (10–20 and >20 mm). The mean annual rainfall increased from ~700 to ~850 mm from the 1930s to the 2000s. This change in rainfall was a key factor in the increase in woody vegetation from 1943 to 2009. We also used field data from the same reserve collected over 30 years to assess the increases in tree cover. Tree cover and density increased significantly by 32.5% and 657.9 indiv ha?1 respectively, over 64 years. Before the proclamation of IGR in 1972, increases in woody vegetation from 1943 were non-significant. After the proclamation of IGR, herbivore population numbers and spatial distribution influenced the accumulation of grassy biomass required to fuel fires. In areas with reduced fuel loads, the consequential suppression of fire accelerated the rate of woody plant invasion into savannas. The increase in woody vegetation coincided with a decrease in palatable (e.g. Acacia gerrardii and Acacia davyi) and an increase in unpalatable woody plants. The avoidance of the unpalatable trees (e.g. Euclea and Searsia species) by large mammalian herbivores has allowed these trees to increase in density relatively unhindered.  相似文献   

19.
Shimizu M  Ishida A  Hogetsu T 《Oecologia》2005,143(2):189-197
We hypothesized that pioneer and late successional species show different morphological and physiological responses in water use after gap formation. The magnitude of the responses was compared between two pioneer species (Macaranga gigantea and Trema orientalis) and four late successional species (Shorea sp.), in an experiment in which saplings were transferred from shade to sun. Although transpiration demand increased following the transfer, root hydraulic conductivity (Lpr) decreased. Lpr was sensitive to brief treatments with HgCl2 (a specific inhibitor of aquaporins). This allows Lpr to be divided into two components: cell-to-cell and apoplastic pathways. The Lpr of cell-to-cell pathway decreased in all species following the transfer, relating to aquaporin depression in roots. Following the transfer, leaf osmotic potentials at full hydration decreased and both leaf mass per area [leaf mass/leaf area (LMA)] and fine-root surface area/leaf surface area (root SA/leaf SA) increased in almost all species, allowing saplings to compensate for the decrease in Lpr. Physiologically, pioneer species showed larger decreases in Lpr and more effective osmotic adjustment than late successional species, and morphologically, pioneer species showed larger increases in root SA/leaf SA and LMA. Water balance at the whole-plant level should be regulated by coupled responses between the aboveground and the belowground parts. Interspecific differences in responses after gap formation suggest niche differentiation in water use between pioneer and late successional species in accordance with canopy-gap size.  相似文献   

20.
Community-structuring processes continue to be of great interest to plant ecologists, and plant spatial patterns have been linked to processes including disturbance, dispersal, environmental heterogeneity, and plant interactions. Under the assumption that the analysis of the spatial structure of plant communities can help to elucidate the type and importance of the predominant community-structuring processes, many studies have analyzed point pattern data on various plant species. A variety of methods have been devised to acquire point pattern data for individual plants, however, the classic tradeoff between the speed of acquisition and the precision of spatial data has meant that large and precise datasets on plant locations are difficult to obtain. The primary goal of this study was to develop a GPS-based methodology for the rapid collection of precise spatial data on plant locations in a semi-arid shrubland in the Great Basin, USA. The secondary goal was to demonstrate a potential application of this approach by using recently developed univariate and bivariate spatial statistics to test for aggregation within the shrub community, as observed in other semi-arid shrublands. We efficiently mapped 2,358 individuals of five shrub species with a spatial error of ≤0.02 m, and found strong statistical evidence of fine-scale aggregation (1) independent of species, (2) within species, and (3) between two species pairs. Our approach is useful for rapidly collecting precise point pattern data in plant communities, and has other applications related to population modeling, GIS analysis, and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号