共查询到20条相似文献,搜索用时 0 毫秒
1.
Enoyl-[acyl carrier protein] (ACP) reductase (ENR) is a key enzyme in type II fatty acid synthesis that catalyzes the last step in each elongation cycle. Therefore, it has been considered as a target for antibiotics. However, recent studies indicate that some pathogens have more than one ENR; in particular, Bacillus subtilis has two ENRs, FabI and FabL. The crystal structures of the ternary complexes of BsFaBI and BsFabL are found as a homotetramer showing the same overall structure despite a sequence identity of only 24%. The positions of the catalytic dyad of Tyr-(Xaa)6-Lys in FabL are almost identical to that of FabI, but a detailed structural analysis shows that FabL shares more structural similarities with FabG and other members of the SDR (short-chain alcohol dehydrogenase/reductase) family. The apo FabL structure shows significantly different conformations at the cofactor and the substrate-binding regions, and this resulted in a totally different tetrameric arrangement reflecting the flexibility of these regions in the absence of the cofactor and substrate/inhibitor. 相似文献
2.
Shahila Mehboob Kent Truong Bernard D. Santarsiero Michael E. Johnson 《Acta Crystallographica. Section F, Structural Biology Communications》2010,66(11):1436-1440
Enoyl‐acyl carrier protein reductase (FabI) catalyzes the last rate‐limiting step in the elongation cycle of the fatty‐acid biosynthesis pathway and has been validated as a potential antimicrobial drug target in Francisella tularensis. The development of new antibiotic therapies is important both to combat potential drug‐resistant bioweapons and to address the broader societal problem of increasing antibiotic resistance among many pathogenic bacteria. The crystal structure of FabI from F. tularensis (FtuFabI) in complex with the inhibitor triclosan and the cofactor NAD+ has been solved to a resolution of 2.1 Å. Triclosan is known to effectively inhibit FabI from different organisms. Precise characterization of the mode of triclosan binding is required to develop highly specific inhibitors. Comparison of our structure with the previously determined FtuFabI structure (PDB code 2jjy ) which is bound to only NAD+ reveals the conformation of the substrate‐binding loop, electron density for which was missing in the earlier structure, and demonstrates a shift in the conformation of the NAD+ cofactor. This shift in the position of the phosphate groups allows more room in the active site for substrate or inhibitor to bind and be better accommodated. This information will be crucial for virtual screening studies to identify novel scaffolds for development into new active inhibitors. 相似文献
3.
Microbial fatty acids are an attractive source of precursors for a variety of renewable commodity chemicals such as alkanes, alcohols, and biofuels. Rerouting lipid biosynthesis into free fatty acid production can be toxic, however, due to alterations of membrane lipid composition. Here we find that membrane lipid composition can be altered by the direct incorporation of medium-chain fatty acids into lipids via the Aas pathway in cells expressing the medium-chain thioesterase from Umbellularia californica (BTE). We find that deletion of the aas gene and sequestering exported fatty acids reduces medium-chain fatty acid toxicity, partially restores normal lipid composition, and improves medium-chain fatty acid yields. 相似文献
4.
Liu W Luo C Han C Peng S Yang Y Yue J Shen X Jiang H 《Biochemical and biophysical research communications》2005,333(4):1078-1086
Helicobacter pylori is a gram-negative pathogenic bacterium that causes peptic ulcer disease and gastric cancer, and studies of the related potent enzymes associated with this bacterium are urgent for the discovery of novel drug targets. In bacteria, beta-hydroxyacyl-acyl carrier protein (ACP) dehydratase (FabZ) is a potent enzyme in fatty acid biosynthesis and catalyzes the dehydration of beta-hydroxyacyl-ACP to trans-2-acyl-ACP. In this study, the cloning and enzymatic characterization of FabZ from H. pylori strain SS1 (HpFabZ) were reported, and the gene sequence of HpfabZ was deposited in the GenBank database. Enzyme dynamic analysis showed that HpFabZ had a K(m) of 82.6+/-4.3 microM toward its substrate analog crotonoyl-CoA. Dynamic light scattering and native-PAGE investigations suggested that HpFabZ exists as hexamer in native state. Enzymatic characterization and thermal-induced unfolding analysis based on circular dichroism spectral measurements indicated that HpFabZ is very stable against high temperature (90 degrees C). Such a high stability of HpFabZ was well elucidated by the strong H-bonds and hydrophobic interactions among the HpFabZ hexamer as investigated in the modeled HpFabZ hexamer structure. Our current study is hoped to provide useful information in better understanding the FabZ of H. pylori strain and further supply possible hints in the discovery of anti-bacterial compounds using HpFabZ as target. 相似文献
5.
6.
Abstract The relationship between fatty acid metabolism and PHA biosynthesis in P. putida is described. Detailed 1 H and 13 C NMR studies were performed to investigate the structures of poly(3-hydroxyalkanoates) (PHAs) formed from carbohydrates and fatty acids. On the basis of these results, it is proposed that during growth on glucose the 3-hydroxyacyl-acyl carrier protein intermediates of the de novo fatty acid biosynthetic pathway are diverted to PHA biosynthesis. Similarly, further evidence is presented that during cultivation on fatty acids, intermediates of the β-oxidation cycle serve as precursors of PHA biosynthesis. 相似文献
7.
Erica S. Martins-Duarte Simon M. Jones Ian H Gilbert Georgia C. Atella Wanderley de Souza Rossiane C. Vommaro 《Parasitology international》2009,58(4):411-415
The discovery of new compounds active against Toxoplasma gondii is extremely important due to the severe disease caused by this pathogen in immunocompromised hosts and to congenital infection. Type II fatty acid biosynthesis has shown to be a promising target for drug intervention in toxoplasmosis. Here we describe the inhibitory effect of 8 thiolactomycin (TLM) analogues against tachyzoite-infected LLC-MK2 cells. The TLM analogues demonstrated anti-T. gondii activity, arresting tachyzoite proliferation with IC50 values in the micromolar level after 24 h and 48 h of treatment. Metabolic labelling of extracellular parasites treated with TLM analogues using [3H]acetate demonstrated that these drugs affected acylglycerol synthesis. The rapid reduction of parasite load suggests that these compounds have selective cytotoxic effects against T. gondii. Transmission electron microscopy demonstrated that TLM analogues interfered with membrane-bounded organelles and parasite division and this in turn affected parasite development and survival. 相似文献
8.
Microbially produced lipids like triacylglycerols or fatty acid ethyl esters are currently of great interest as fuel replacements or other industrially relevant compounds. They can even be produced by non-oleaginous microbes, like Escherichia coli, upon metabolic engineering. However, there is still much room for improvement regarding the yield for a competitive microbial production of lipids or biofuels. We genetically engineered E. coli by expressing fadD, fadR, pgpB, plsB and ‘tesA in combination with atfA from Acinetobacter baylyi. A total fatty acid contents of up to 16% (w/w) was obtained on complex media, corresponding to approximately 9% (w/w) triacylglycerols and representing the highest titers of fatty acids and triacylglycerols obtained in E. coli under comparable cultivation conditions, so far. To evaluate further possibilities for an optimization of lipid production, ten promising bacterial wax ester synthase/acyl-Coenzyme A:diacylglycerol acyltransferases were tested and compared. While highest triacylglycerol storage was achieved with AtfA, the mutated variant AtfA-G355I turned out to be most suitable for fatty acid ethyl ester biosynthesis and enabled an accumulation of approx. 500 mg/L without external ethanol supplementation. 相似文献
9.
In vivo analysis of straight-chain and branched-chain fatty acid biosynthesis in three actinomycetes 总被引:9,自引:0,他引:9
Kimberlee K. Wallace Bitao Zhao Hamish A.I. McArthur Kevin A. Reynolds 《FEMS microbiology letters》1995,131(2):227-234
Abstract The starter units for branched-chain and straight-chain fatty acid biosynthesis was investigated in vivo in three actinomycetes using stable isotopes. Branched-chain fatty acids, which constitute the majority of the fatty acid pool, were confirmed to be biosynthesized using the amino acid degradation products methylbutyryl-CoA and isobutyryl-CoA as starter units. Straight-chain fatty acids were shown to be constructed using butyryl-CoA as a starter unit. Isomerization of the valine catabolite isobutyryl-CoA was shown to be only a minor source of this butyryl-CoA. 相似文献
10.
目的:探讨多不饱和脂肪酸亚麻酸对肝癌细胞HepG2节律钟的影响。方法:通过50%的马血清刺激诱导HepG2细胞同步化,利用亚麻酸处理同步化后的HepG2细胞。进一步利用荧光定量PCR和western-blot检测节律钟关键基因的变化。结果:HepG2细胞经过亚麻酸处理后节律钟关键基因芳烃受体核转位蛋白3(brain and muscle Arnt-like protein-1,BMAL1)和蓝光受体蛋白1(Cryptochrome 1,CRY1)在转录水平的表达水平有所降低。与此一致的是,在蛋白质水平CRY1和BMAL1的表达同样受到亚麻酸的抑制。同时发现,CRY1的转录水平的节律周期有明显的缩短。进一步研究发现,亚麻酸对HepG2细胞的脂肪酸合成关键基因脂肪酸合酶(Fatty acid synthase,FASN)和硬脂酰辅酶A脱氢酶(Stearoyl-CoA desaturase 1,SCD1),以及免疫促炎因子白细胞介素-6(Interleukelin-6,IL-6)和白细胞介素-8(Interleukelin-8,IL-8)的mRNA的表达具有明显的抑制效应。结论:亚麻酸影响了肝癌HepG2细胞水平的节律基因的表达水平以及缩短了节律基因的周期,并且对于HepG2细胞的脂肪酸合成以及免疫促炎因子有明显的抑制效应。 相似文献
11.
12.
Asia Nosheen Humaira Yasmin Rabia Naz Rumana Keyani Saqib Mumtaz Syed Babar Hussain Muhammad Nadeem Hassan Othman M. Alzahrani Ahmed Noureldeen Hadeer Darwish 《Saudi Journal of Biological Sciences》2022,29(1):43-52
Biodiesel is considered as a potential alternative energy source, but problem exists with the quantity and quality of feedstock used for it. To improve the feedstock quality of biodiesel, a field experiment was conducted under natural conditions. Cultivar Thori of kasumbha was used in the experiment. Commercialized biofertilizers were applied at the rate of 20 kg per acre and chemical fertilizer (diammonium phosphate) was applied as half dose (15 kg/ha). Results indicated that number of leaf plant−1, leaf area, number of seeds capitulum−1 was significantly increased by biofertilizer treatment alone (BF) and combine treatment of biofertilizer and chemical fertilizer (BFCF). Agronomic traits such as plant height, no. of branches of a plant, no. of capitulum/plant was improved significantly by BF treatment over the control. Maximum 1000 seed weight (41%) and seed yield (23%) were recorded in half dose of chemical fertilizers treatment (CFH). Seed oil content and seed phenolics were significantly improved by BF and CF treatments while maximum biodiesel yield was recorded by BF treatment. Maximum oleic acid was recorded by BF treatment while other fatty acids being maximum in control except linoleic acid in BFCF treatment. Results for specific gravity were non-significant while acid value and free fatty acid contents were substantially reduced by BF treatment as compared to other treatments. Maximum value of iodine number was recorded in BFCF treatment while tocopherol contents were improved by BF treatment. It is inferred that biofertilizer treatment alone perform better as compared to other treatments and 50% chemical fertilizer can be replaced using biofertilizer which is a good approach for sustainable environmental-friendly agriculture.Keyword: Green energy, Biofuel, Biodiesel, Kasumbha, Biofertilizers, Fatty acid, NMR 相似文献
13.
Eleni Bachlava Ralph E. Dewey Joseph W. Burton Andrea J. Cardinal 《Molecular breeding : new strategies in plant improvement》2009,23(2):337-347
The development of high-oleate soybean germplasm is hindered by the lack of knowledge of the genetic factors controlling oleate
phenotypic variation. In the present study, several candidate genes implicated in oleate biosynthesis were mapped and their
cosegregation with oleate, linoleate and linolenate quantitative trait loci (QTLs) was investigated. FAD2-2C, a previously described ω-6 desaturase isoform, was localized on linkage group E; whereas, a novel FAD2-2 isoform, designated as FAD2-2D, mapped on linkage group N. In addition, two isoforms were identified for the aminoalcoholphosphotransferase-encoding GmAAPT1 gene, denoted AAPT1a and AAPT1b. A database query suggested that only one functional copy of the FAD6 gene, encoding a plastid localized ω-6 desaturase, exists in the soybean genome. AAPT1a and FAD6 mapped on linkage group D1b, 23.40 cM apart. Linolenate QTLs with minor effects were identified near the FAD6 and AAPT1a markers in two segregating populations.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
14.
We recently identified the phaG(Pp) gene encoding (R)-3-hydroxydecanoyl-ACP:CoA transacylase in Pseudomonas putida, which directly links the fatty acid de novo biosynthesis and polyhydroxyalkanoate (PHA) biosynthesis. An open reading frame (ORF) of which the deduced amino acid sequence shared about 57% identity with PhaG from P. putida was identified in the P. aeruginosa genome sequence. Its coding region (herein called phaG(Pa)) was amplified by PCR and cloned into the vector pBBR1MCS-2 under lac promoter control. The resulting plasmid pBHR88 mediated PHA synthesis contributing to about 13% of cellular dry weight from non-related carbon sources in the phaG(Pp)-negative mutant P. putida PhaG(N)-21. The PHA was composed of 5 mol% 3-hydroxydodecanoate, 61 mol% 3-hydroxydecanoate, 29 mol% 3-hydroxyoctanoate and 5 mol% 3-hydroxyhexanoate. Furthermore, an isogenic phaG(Pa) knock-out mutant of P. aeruginosa was constructed by gene replacement. The phaG(Pa) mutant did not show any difference in growth rate, but PHA accumulation from gluconate was decreased to about 40% of wild-type level, whereas from fatty acids wild-type level PHA accumulation was obtained. These data suggested that PhaG from P. aeruginosa exhibits 3-hydroxyacyl-ACP:CoA transacylase activity and strongly enhances the metabolic flux from fatty acid de novo synthesis towards PHA(MCL) synthesis. Therefore, a function could be assigned to the ORF present in the P. aeruginosa genome, and a second PhaG is now known. 相似文献
15.
Stephen P. Muench John B. Rafferty Rima Mcleod David W. Rice Sean T. Prigge 《Acta Crystallographica. Section D, Structural Biology》2003,59(7):1246-1248
New hope has been gained in the control of the malaria parasite Plasmodium falciparum (pf) with the discovery that the parasite contains a prokaryotic type II fatty‐acid synthase (FAS). Since enzymes of this type are absent in humans, they are potential targets for the development of new drugs. The enoyl reductase enzyme (ENR) belonging to this pathway is of particular interest because it has been shown to be inhibited by submicromolar concentrations of the antimicrobial agent triclosan. Here, the development of an efficient overexpression system for pfENR as a fusion protein with maltose‐binding protein, its simple one‐step purification and cleavage from its fusion protein and crystallization under new conditions with bound NAD+ cofactor and triclosan are reported. The crystals belong to the space group P21, with approximate unit‐cell parameters a = 88.2, b = 82.4, c = 94.8 Å, β = 90.77°, and contain a tetramer in the asymmetric unit. Cryocooled crystals (100 K) diffracted to beyond 2.2 Å resolution at the Daresbury Synchrotron Radiation Source. 相似文献
16.
T. Ritsema A. M. Gehring A. R. Stuitje K. M. G. M. van der Drift I. Dandal R. H. Lambalot C. T. Walsh J. E. Thomas-Oates B. J. J. Lugtenberg H. P. Spaink 《Molecular & general genetics : MGG》1998,257(6):641-648
The nodulation protein NodF of Rhizobium shows 25% identity to acyl carrier protein (ACP) from Escherichia coli (encoded by the gene acpP). However, NodF cannot be functionally replaced by AcpP. We have investigated whether NodF is a substrate for various E. coli enzymes which are involved in the synthesis of fatty acids. NodF is a substrate for the addition of the 4′-phosphopantetheine
prosthetic group by holo-ACP synthase. The Km value for NodF is 61 μM, as compared to 2 μM for AcpP. The resulting holo-NodF serves as a substrate for coupling of malonate
by malonyl-CoA:ACP transacylase (MCAT) and for coupling of palmitic acid by acyl-ACP synthetase. NodF is not a substrate for
β-keto-acyl ACP synthase III (KASIII), which catalyses the initial condensation reaction in fatty acid biosynthesis. A chimeric
gene was constructed comprising part of the E.coliacpP gene and part of the nodF gene. Circular dichroism studies of the chimeric AcpP-NodF (residues 1–33 of AcpP fused to amino acids 43–93 of NodF) protein
encoded by this gene indicate a similar folding pattern to that of the parental proteins. Enzymatic analysis shows that AcpP-NodF
is a substrate for the enzymes holo-ACP synthase, MCAT and acyl-ACP synthetase. Biological complementation studies show that
the chimeric AcpP-NodF gene is able functionally to replace NodF in the root nodulation process in Vicia sativa. We therefore conclude that NodF is a specialized acyl carrier protein whose specific features are encoded in the C-terminal
region of the protein. The ability to exchange domains between such distantly related proteins without affecting conformation
opens exciting possibilities for further mapping of the functional domains of acyl carrier proteins (i. e., their recognition
sites for many enzymes).
Received: 22 September 1997 / Accepted: 31 October 1997 相似文献
17.
Prosen KR Carroll RK Burda WN Krute CN Bhattacharya B Dao ML Turos E Shaw LN 《Bioorganic & medicinal chemistry letters》2011,21(18):5293-5295
Bacterial fatty acid synthesis (FAS) is a potentially important, albeit controversial, target for antimicrobial therapy. Recent studies have suggested that the addition of exogenous fatty acids (FAs) to growth media can circumvent the effects of FAS-targeting compounds on bacterial growth. Consequently, such agents may have limited in vivo applicability for the treatment of human disease, as free FAs are abundant within the body. Our group has previously developed N-thiolated β-lactams and found they function by interfering with FAS in select pathogenic bacteria, including MRSA. To determine if the FAS targeting activity of N-thiolated β-lactams can be abrogated by exogenous fatty acids, we performed MIC determinations for MRSA strains cultured with the fatty acids oleic acid and Tween 80. We find that, whilst the activity of the known FAS inhibitor triclosan is severely compromised by the addition of both oleic acid and Tween 80, exogenous FAs do not mitigate the antibacterial activity of N-thiolated β-lactams towards MRSA. Consequently, we propose that N-thiolated β-lactams are unique amongst FAS-inhibiting antimicrobials, as their effects are unimpeded by exogenous FAs. 相似文献
18.
19.
Christopher D. Goodman Vanessa Mollard Theola Louie Georgina A. Holloway Keith G. Watson Geoffrey I. McFadden 《International journal for parasitology》2014
Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor. The apicoplast is a useful drug target but the specificity of compounds believed to target apicoplast fatty acid biosynthesis has become uncertain, as this pathway is not essential in blood stages of the parasite. Herbicides that inhibit the plastid acetyl Coenzyme A (Co-A) carboxylase of plants also kill Plasmodium falciparum in vitro, but their mode of action remains undefined. We characterised the gene for acetyl Co-A carboxylase in P. falciparum. The P. falciparum acetyl-CoA carboxylase gene product is expressed in blood stage parasites and accumulates in the apicoplast. Ablation of the gene did not render parasites insensitive to herbicides, suggesting that these compounds are acting off-target in blood stages of P. falciparum. 相似文献