首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1–matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for the function of these structures, and here we examine the role of N-ethylmaleimide–sensitive factor–activating protein receptor (SNARE)–mediated membrane traffic in the transport of MT1-MMP to invadopodia. During invadopodium formation in MDA-MB-231 human breast cancer cells, increased association of SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) is detected by coimmunoprecipitation. Blocking the function of these SNAREs perturbs invadopodium-based ECM degradation and cell invasion. Increased level of SNAP23-Syntaxin4-VAMP7 interaction correlates with decreased Syntaxin4 phosphorylation. These results reveal an important role for SNARE-regulated trafficking of MT1-MMP to invadopodia during cellular invasion of ECM.  相似文献   

2.
3.
Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the “autocrine extracellular matrix (ECM) deposition” fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell–directed movement.  相似文献   

4.
Bacterial adherence to and invasion of eukaryotic cells are important mechanisms of pathogenicity. Most Gram-positive bacteria interact with the components of the host extracellular matrix (ECM) to adhere to, colonize and invade cells and tissues. The bacterial proteins that bind to components of the ECM harbour signal sequences for their secretion and mechanisms of anchoring to the host cell surface. However, in recent years, some cell-surface adhesins and invasins of Gram-positive bacteria have been described that do not possess a signal sequence or a membrane anchor. These proteins are secreted by an as-yet-unknown mechanism and are probably localized on the bacterial surface by reassociation. These anchorless but surface-located adhesins and invasins represent a new class of virulence factors.  相似文献   

5.
Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL‐4/6), chemokines (IL‐8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear. Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore‐forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair.  相似文献   

6.
Integrin-mediated adhesion regulates trafficking of cholesterol-enriched membrane microdomains (CEMM). Upon cell detachment from the extracellular matrix (ECM), CEMMs undergo rapid internalization and are cleared from the plasma membrane. This pathway regulates integrin-mediated Rac membrane targeting, allowing coupling of Rac to downstream effectors. Internalization of CEMMs is mediated by Dynamin-2, a regulator of caveolae dynamics, and caveolin-1, an essential caveolae coat protein. Translocation of tyrosine phosphorylated caveolin-1 from focal adhesions to caveolae upon cell detachment induces CEMM internalization. Notably, integrin-mediated regulation of Erk, phosphatidylinositol-3-OH kinase (PI3K) and Rac pathways is dependent on caveolin-1. These results describe a novel pathway in which integrins prevent downregulation of Erk, PI3K and Rac-dependent pathways by inhibiting caveolin-1-dependent endocytosis. This pathway define a novel molecular mechanism for regulated cell growth and tumor suppression by caveolin-1.  相似文献   

7.
We characterized a medaka mutant, vertebra imperfecta (vbi), that displays skeletal defects such as craniofacial malformation and delay of vertebra formation. Positional cloning analysis revealed a nonsense mutation in sec24d encoding a component of the COPII coat that plays a role in anterograde protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Immunofluorescence analysis revealed the accumulation of type II collagen in the cytoplasm of craniofacial chondrocytes, notochord cells, and the cells on the myoseptal boundary in vbi mutants. Electron microscopy analysis revealed dilation of the ER and defective secretion of ECM components from cells in both the craniofacial cartilage and notochord in vbi. The higher vertebrates have at least 4 sec24 paralogs; however, the function of each paralog in development remains unknown. sec24d is highly expressed in the tissues that are rich in extracellular matrix and is essential for the secretion of ECM component molecules leading to the formation of craniofacial cartilage and vertebra.  相似文献   

8.
Cell polarity is essential for cell division, cell differentiation, and most differentiated cell functions including cell migration. The small G protein Cdc42 controls cell polarity in a wide variety of cellular contexts. Although restricted localization of active Cdc42 seems to be important for its distinct functions, mechanisms responsible for the concentration of active Cdc42 at precise cortical sites are not fully understood. In this study, we show that during directed cell migration, Cdc42 accumulation at the cell leading edge relies on membrane traffic. Cdc42 and its exchange factor βPIX localize to intracytosplasmic vesicles. Inhibition of Arf6-dependent membrane trafficking alters the dynamics of Cdc42-positive vesicles and abolishes the polarized recruitment of Cdc42 and βPIX to the leading edge. Furthermore, we show that Arf6-dependent membrane dynamics is also required for polarized recruitment of Rac and the Par6-aPKC polarity complex and for cell polarization. Our results demonstrate influence of membrane dynamics on the localization and activation of Cdc42 and consequently on directed cell migration.  相似文献   

9.
Dystroglycan (Dg) is a widely expressed extracellular matrix (ECM) receptor required for muscle viability, synaptogenesis, basementmembrane formation and epithelial development. As an integral component of the Dystrophin-associated glycoprotein complex, Dg plays a central role in linking the ECM and the cytoskeleton. Disruption of this linkage in skeletal muscle leads to various types of muscular dystrophies. In epithelial cells, reduced expression of Dg is associated with increased invasiveness of cancer cells. We have previously shown that Dg is required for epithelial cell polarity in Drosophila, but the mechanisms of this polarizing activity and upstream/downstream components are largely unknown. Using the Drosophila follicle-cell epithelium (FCE) as a model system, we show that the ECM molecule Perlecan (Pcan) is required for maintenance of epithelial-cell polarity. Follicle cells that lack Pcan develop polarity defects similar to those of Dg mutant cells. Furthermore, Dg depends on Pcan but not on Laminin A for its localization in the basal-cell membrane, and the two proteins bind in vitro. Interestingly, the Dg form that interacts with Pcan in the FCE lacks the mucin-like domain, which is thought to be essential for Dg ligand binding activity. Finally, we describe two examples of how Dg promotes the differentiation of the basal membrane domain: (1) by recruiting/anchoring the cytoplasmic protein Dystrophin; and (2) by excluding the transmembrane protein Neurexin. We suggest that the interaction of Pcan and Dg at the basal side of the epithelium promotes basal membrane differentiation and is required for maintenance of cell polarity in the FCE.  相似文献   

10.
Neural cells secrete diverse molecules, which accumulate in the extracellular space and form the extracellular matrix (ECM). Interactions between cells and the ECM are well recognized to play the crucial role in cell migration and guidance of growing axons, whereas formation of mature neural ECM in the form of perineuronal nets is believed to restrict certain forms of developmental plasticity. On the other hand, major components of perineuronal nets and other ECM molecules support induction of functional plasticity, the most studied form of which is long-term potentiation. Here, we review the underlying mechanisms by which ECM molecules, their receptors and remodeling proteases regulate the induction and maintenance of synaptic modifications. In particular, we highlight that activity-dependent secretion and activation of proteases leads to a local cleavage of the ECM and release of signaling proteolytic fragments. These molecules regulate transmitter receptor trafficking, actin cytoskeleton, growth of dendritic spines, and formation of dendritic filopodia.  相似文献   

11.
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of α5β1 integrin. VAMP2 was present on vesicles containing endocytosed β1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface α5β1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of α5β1, without altering cell surface expression of α2β1 integrin or α3β1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of α5β1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.  相似文献   

12.
BACKGROUND: Locomoting cells exhibit a constant retrograde flow of plasma membrane (PM) proteins from the leading edge lamellipodium backward, which when coupled to substrate adhesion, may drive forward cell movement. However, the intracellular source of these PM components and whether their continuous retrograde flow is required for cell motility is unknown.RESULTS: To test the hypothesis that the anterograde secretion pathway supplies PM components for retrograde flow that are required for lamellipodial activity and cell motility, we specifically inhibited transport of cargo from the trans-Golgi network (TGN) to the PM in Swiss 3T3 fibroblasts and monitored cell motility using time-lapse microscopy. TGN-to-PM trafficking was inhibited with a dominant-negative, kinase-dead (kd) mutant of protein kinase D1 (PKD) that specifically blocks budding of secretory vesicles from the TGN and does not affect other transport pathways. Inhibition of PKD on the TGN inhibited directed cell motility and retrograde flow of surface markers and filamentous actin, while inhibition of PKD elsewhere in the cell neither blocked anterograde membrane transport nor cell motile functions. Exogenous activation of Rac1 in PKD-kd-expressing cells restored lamellipodial dynamics independent of membrane traffic. However, lamellipodial activity was delocalized from a single leading edge, and directed cell motility was not fully recovered.CONCLUSIONS: These results indicate that PKD-mediated anterograde membrane traffic from the TGN to the PM is required for fibroblast locomotion and localized Rac1-dependent leading edge activity. We suggest that polarized secretion transmits cargo that directs localized signaling for persistent leading edge activity necessary for directional migration.  相似文献   

13.
Our previous studies have demonstrated increased expression of insulin‐like growth factor binding protein‐5 (IGFBP‐5) in fibrotic tissues and IGFBP‐5 induction of extracellular matrix (ECM) components. The mechanism resulting in increased IGFBP‐5 in the extracellular milieu of fibrotic fibroblasts is unknown. Since Caveolin‐1 (Cav‐1) has been implicated to play a role in membrane trafficking and signal transduction in tissue fibrosis, we examined the effect of Cav‐1 on IGFBP‐5 internalization, trafficking and secretion. We demonstrated that IGFBP‐5 localized to lipid rafts in human lung fibroblasts and bound Cav‐1. Cav‐1 was detected in the nucleus in IGFBP‐5‐expressing fibroblasts, within aggregates enriched with IGFBP‐5, suggesting a coordinate trafficking of IGFBP‐5 and Cav‐1 from the plasma membrane to the nucleus. This trafficking was dependent on Cav‐1 as fibroblasts from Cav‐1 null mice had increased extracellular IGFBP‐5, and as fibroblasts in which Cav‐1 was silenced or lipid raft structure was disrupted through cholesterol depletion also had defective IGFBP‐5 internalization. Restoration of Cav‐1 function through administration of Cav‐1 scaffolding peptide dramatically increased IGFBP‐5 uptake. Finally, we demonstrated that IGFBP‐5 in the ECM protects fibronectin from proteolytic degradation. Taken together, our findings identify a novel role for Cav‐1 in the internalization and nuclear trafficking of IGFBP‐5. Decreased Cav‐1 expression in fibrotic diseases likely leads to increased deposition of IGFBP‐5 in the ECM with subsequent reduction in ECM degradation, thus identifying a mechanism by which reduced Cav‐1 and increased IGFBP‐5 concomitantly contribute to the perpetuation of fibrosis.  相似文献   

14.
Soy isoflavones are diphenolic compounds that are frequently used for alternative treatment of ageing symptoms in both genders. They operate at principally two hierarchical levels of functional organization – cellular and molecular, while these ‘types’ of action appear to have indefinite borders. Soy isoflavone action at the cellular level involves inter alia the effects on cell mechanics. This epigenetic and modular determinant of cell function and fate is defined by: the anchorage to extracellular matrix (ECM) and neighboring cells, cytoskeleton organization, membrane tension and vesicle trafficking. Soy isoflavones have been reported to: (i) generally fashion an inert cell phenotype in some cancers and enhance the cell anchorage in connective tissues, via the effects on ECM proteins, focal adhesion kinases-mediated events and matrix metalloproteinases inhibition; (ii) affect cytoskeleton integrity, the effects being related to Ca2+ ions fluxes and involving cell retraction or differentiation/proliferation-related variations in mechanical status; (iii) increase, remain “silent” or decrease membrane tension/fluidity, which depends on polarity and a number and arrangement of functional groups in applied isoflavone; (iv) provoke inhibitory effects on vesicle trafficking and exo-/endocytosis, which are usually followed by changed cell morphology. Here we present and discuss the abundance of effects arising from cells’ “encounter” with soy isoflavones, focusing on different morphofunctional definers of cell mechanics.  相似文献   

15.
The generation of epithelial cell polarity is a key process during development. Although the induction and orientation of cell polarity by cell-cell and cell-extracellular matrix (ECM) interactions is well established, the molecular mechanisms by which signals from the ECM control cell polarity in developing epithelial tissues remain poorly understood. Here, we have used the follicular epithelium of the Drosophila ovary to investigate the role that integrins, the main cell-ECM receptors, play in the establishment of apicobasal polarity. Mature follicle cells have an apical side facing the germ line and a basal side in contact with a basement membrane. Our results show that integrins - presumably via interactions with the basement membrane - play a reinforcing role in follicle cell polarization, as they are required to establish and/or maintain follicle cell membrane asymmetry only when contact with the germ line is prevented. We suggest that the primary cue for polarization of the follicular epithelium is contact with the germline cells. In addition, while interfering with apical and lateral polarization cues leads to apoptosis, we show here that inhibition of contact with the basement membrane mediated by integrins does not affect cell survival. Finally, we provide evidence to suggest that integrins are required to orientate epithelial polarity in vivo.  相似文献   

16.
The Golgi matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion whereas, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargo. We have taken into consideration the C-terminal valine-bearing receptors CD8α and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from the Frizzled4 mutation involving its C-terminal valine.  相似文献   

17.
The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.  相似文献   

18.
Mouse mammary epithelial cells undergo transdifferentiation via epithelial–mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland.  相似文献   

19.
Emerging aspects of membrane traffic in neuronal dendrite growth   总被引:2,自引:0,他引:2  
Polarized growth of the neuron would logically require some form of membrane traffic to the tip of the growth cone, regulated in conjunction with other trafficking processes that are common to both neuronal and non-neuronal cells. Unlike axons, dendrites are endowed with membranous organelles of the exocytic pathway extending from the cell soma, including both rough and smooth endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Dendrites also have satellite Golgi-like cisternal stacks known as Golgi outposts that have no membranous connections with the somatic Golgi. Golgi outposts presumably serve both general and specific local trafficking needs, and could mediate membrane traffic required for polarized dendritic growth during neuronal differentiation. Recent findings suggest that dendritic growth, but apparently not axonal growth, relies very much on classical exocytic traffic, and is affected by defects in components of both the early and late secretory pathways. Within dendrites, localized processes of recycling endosome-based exocytosis regulate the growth of dendritic spines and postsynaptic compartments. Emerging membrane traffic processes and components that contribute specifically to dendritic growth are discussed.  相似文献   

20.
《Organogenesis》2013,9(2):65-70
The extracellular matrix (ECM) plays an essential role in organizing tissues, defining their shapes or in presenting growth factors. Their components have been well described in most species, but our understanding of the mechanisms that control ECM remodeling remains limited. Likewise, how the ECM contributes to cellular mechanical responses has been examined in few cases. Here, I review how studies performed in C. elegans have brought several significant advances on those topics. Focusing only on epithelial cells, I discuss basement membrane invasion by the anchor cell during vulva morphogenesis, a process that has greatly expanded our knowledge of ECM remodeling in vivo. I then discuss the ECM role in a novel mechanotransduction process, whereby muscle contractions stimulate the remodeling of hemidesmosome-like junctions in the epidermis, which highlights that these junctions are mechanosensitive. Finally, I discuss progress in defining the composition and potential roles of the apical ECM covering epidermal cells in embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号